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Abstract. A simple phenomenological model that describes capillary condensation and 

evaporation of pure fluids confined in cylindrical mesopores is presented. Following the work 

of Celestini (Phys. Lett. A, 1997, 228, 84), the free energy density of the system is derived 

using interfacial tensions and a corrective term that accounts for the interaction coupling 

between the vapor/adsorbed liquid and the adsorbed liquid/adsorbent interfaces. This 

corrective term is shown to be consistent with the Gibbs adsorption isotherm and assessed by 

standard adsorption tests. This model reveals that capillary condensation and evaporation are 

metastable and equilibrium processes respectively, hence exhibiting the existence of a 

hysteresis loop in adsorption/desorption isotherms that is well known in experiment. We 

extend the phenomenological model of Celestini to give a quantitative description of 

adsorption on the pore wall and hysteresis width evolution with temperature and confinement. 

Direct quantitative comparison is made with experimental data for confined argon. Used as a 

characterizing tool, this integrated model allows in a single fit of an experimental 

adsorption/desorption isotherm assessing essential characterization data such as the specific 

surface area, pore volume, and mean pore size. 
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Introduction 

Nanoporous materials are made up of pores having a size of a few nanometers that are either 

unconnected/independent or connected.
1,2

 Porous materials with independent pores include 

solids with either crystalline (porous silicon,
3
 carbon nanotubes

4
) or amorphous pore walls 

(MCM-41
5
, SBA-15

6
). Networked porous solids are usually glasses such as Vycor

7
 or CPG

8
. 

Condensation and/or freezing of molecular fluids within nanoporous materials are routinely 

used for characterization purpose using macroscopic physical laws such as the well know 

Kelvin or Gibbs-Thompson equations that link a thermodynamic quantity to the mean pore 

size.
9,10

 These approaches implicitly assume that such phenomena are first order transitions 

involving phase coexistence between the gas and liquid or the solid and liquid phases. The 

stability of the confined adsorbate is described using gas/liquid or liquid/solid surface 

tensions. Capillary condensation in nanoporous materials is usually an irreversible 

phenomenon, as revealed by significant and reproducible hysteresis loops observed during 

adsorption/desorption cycles (amount adsorbed versus pressure).
1
 Such a hysteresis loop 

shrinks and disappears as the temperature increases.
11,12,13,14,15

 This hysteretic behavior, which 

is common to both nanoporous materials with independent, unconnected pores or connected 

pores, is often explained using one of the following model.
16

 In the case of connected pores, 

the hysteresis loop is ascribed to the existence of constrictions or bottlenecks between pores 

that cause a delay in the desorption process compared to the adsorption
17,18,19

. In contrast, 

hysteresis loops observed for regular unconnected pores are usually interpreted as a change in 

the symmetry of the gas/liquid interface upon filling and emptying mechanisms
16,20,21

. Density 

Functional or Lattice Gas theories have shown that the first order character of fluid 

condensation is relevant for unconnected slit pores only
22

. Indeed, fluids in very narrow 

cylindrical pores are one dimensional systems and, therefore, cannot exhibit stricto sensus a 

first order transition.
22,23

 On the other hand, one expects fluids confined in cylindrical 
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mesopores large enough to behave as a quasi three-dimensional system. In other words, there 

must be a minimum pore size for which the confined fluid recovers its bulk properties. In the 

case of disordered and/or connected porous materials, recent works have shown that capillary 

condensation cannot be considered as a first order transition; the morphological and 

topological disorders generate a complex free energy landscape with many metastable states 

that prevents the system from following the “at equilibrium” thermodynamic path
24,25,26

. 

However, the picture remains unclear since these results were obtained for very large 

confined molecules in mesopores (i.e. using very large lattice spacing); the same calculation 

repeated for  “normal” size molecules confined into a big chunk of Vycor, showed the same 

temperature dependence of the hysteresis loop width as observed for large enough cylindrical 

and slit pores.
27

 As in the case of simple pore geometry, one expects fluids confined in 

disordered porous materials with pores large enough would behave as a quasi three-

dimensional system. Recent lattice gas calculations by Detcheverry et al.
28

 supports this 

intuition; the authors found evidence of a first order transition in the case of an aerogel sample 

with a porosity of 95%, while such a transition was not observed for a similar porous structure 

with a porosity of 87%. 

In this work, we report a simple phenomenological model based on a generalized Gibbs 

surface dividing theory
29

 for adsorption and capillary condensation/evaporation in cylindrical 

mesopores (the slit pore geometry will be considered in a separate paper)
30

. The model, which 

does not require a detailed description of the system at the molecular level, is derived 

following the same approach as that reported in our previous work for the liquid/solid 

transition in confined geometry.
31

 It is shown that the present model describes well the main 

features of gas/liquid transitions of simple molecular fluids confined in independent and 

unconnected cylindrical mesopores. The remainder of the paper is organized as follows. We 

first present the model and underlying concepts. Then, we give the different steps to derive 
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necessary model parameters and compare calculated adsorption/desorption isotherms to 

experiment in the case of Ar confined in MCM-41 nanoporous materials of various pore 

dimensions and at several temperatures.  

 

Model for the interactions between interfaces 

Let us consider a system composed of three phases 1, 2, and 3 separated by two interfaces 1/2 

and 2/3 (see Figure 1). These interfaces are characterized at the microscopic scale by 

gradients of the physical properties of the system, such as the density of particles for instance. 

Thermodynamics, which deals with homogeneous phases only, cannot be used to describe 

such inhomogeneous systems. However, it is possible to overcome this problem by using the 

Gibbs surface dividing theory
29

 in which the system shown in Figure 1 is modelled as three 

homogeneous phases separated by infinitely thin, fictive interfaces that are located in the real 

interfacial regions from the concept of surface excess adsorbed amount defined as the excess 

of the amount of adsorbed molecules actually present in the interfacial layer over that which 

would be present at the same equilibrium gas pressure in a bulk reference system. In this 

interfacial adsorbed layer, the gas phase concentration is constant up to the Gibbs surface, and 

the reference concentration of the adsorbing fluid is zero beyond it, up to the solid surface. 

Obviously such a formal definition is becoming unclear in the case of a layer made of a few 

molecular size thicknesses. 
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Figure 1. (left) A real system is composed of three phases 1, 2, and 3 separated by two 

interfaces 1/2 and 2/3. (Right) Using the Gibbs surface dividing theory, the system is 

modelled as three homogeneous phases separated by infinitely thin, fictive interfaces that are 

located in the middle of the real interfaces. 

 

Within the frame of the Gibbs surface dividing theory, the grand free energy of such a system 

can be expressed as: 

1 1 2 2 3 3 12 12 23 23PV PV PV A A          (1) 

where VI and PI are the volume and pressure of each phase, while AIJ and IJ are the surface 

area and surface tension of each interface (I, J = 1, 2 or 3). In the case of macroscopic phases, 

interfaces 1/2 and 2/3 can be considered as independent as they are located far from each 

other. On the other hand, such an assumption breaks down for nanoscopic phases since the 

two interfaces are coupled because of the small separation distance between them, which 

becomes comparable with the characteristic length scaling the correlations between the two 

interfaces; i.e. variation of one interface induces a response of the other interface. Following 

the previous work by Celestini,
32,33

 equation (1) is rewritten in order to account for such an 

interaction by adding a coupling term ( )t :  

1 1 2 2 3 3 12 23 ( )PV PV PV A A t A            (2) 

Where t is the distance between the two plane interfaces 1/2 and 2/3. Equation (2) assumes 

that the two interfaces have the same area, A. The coupling term must verify the following 
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condition: when t is much larger than the characteristic distance the correlations between 

the interfaces vanish. As a result the energy related to the interface reduces to 12 23A A    so 

that ( )t  tends to 0. In contrast, when t becomes zero, phase 2 disappears and the energy 

related to the interface reduces to 13 A  so that ( )t  tends to the spreading coefficient S 

defined by: 

   tS  231213   (3) 

 These conditions requires the coupling term ( )t  to have the following form:
32,33,34

 

1)(lim
0




t
t

  and 0)(lim 


t
t

   (4) 

Among others possible functions, Celestini
32,33

 suggested the following (t) function: 

 
( ) exp

t
t

T

 
     

 (5) 

As shown below, we introduce a dependency upon the temperature T of the characteristic 

length scaling the interactions in the system. Equation (5) can be seen as a general solution 

that can be parameterized to reproduce experimental data.  

 

Adsorption on an infinite plane substrate 

Up to now the phases 1, 2 and 3 forming the system were unspecified. Consider now the case 

where the phase 1=V is a vapor phase, the phase 2=L the corresponding liquid phase adsorbed 

in the form of a thin layer of varying thickness t onto a solid substrate forming the phase 3=S. 

The existence of an adsorbed film at the solid substrate implies that the spreading coefficient 

VS VL LSS        has to be positive.
34

 In the following, the volume of the solid substrate will 

remain constant, while the gas occupies a volume of infinite extent. Accordingly considering 

only the change  in the grand free energy  and similarly to (2) one writes: 
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/ ( ) ( )L V LS LVA t P P t          (6) 

The adsorbed liquid and its vapor being in thermodynamic equilibrium, their pressures have 

to satisfy the Kelvin equation:  













0

ln
P

P
PP V

LLV   
(7) 

where the liquid density L has been assumed to be much larger than the vapor density V
21,35

 

and P0 is the vapor saturating pressure. Substitution of (7) in (6) leads to: 

 t
P

P
kTtA LVLS

V
L  










0

ln  
(8) 

At a given pressure PV the thickness t of the adsorbed film is provided by minimizing  

with respect to t. We write: 

0

0 ln

V

V
L

P

Pd
kT

t dt P

   
      

   
 

(9) 

Owing to conditions (4) that has to meet, (9) can be integrated in the form: 

 
0

ln V
L

t

P
t kT d

P

  
    

 
  

(10) 

According to the Gibbs theory of adsorption, the system can also be described by the solid, 

the gas phase and an interface whose effective interface energy is eff

SV . With such a 

description, equation (6) reduces to: 

eff

SVA  /  (11) 

Equating (8) and (11), one obtains: 

   t
P

P
kTtt LVLS

V
L

eff

SV  









0

ln  
(12) 

Relation (11) shows that eff

SV SV    as t = 0. Taking into account (10), differentiation of (12) 

gives: 
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lneff

SV L Vd t kT d P     (13) 

Interestingly, noting Lt=the amount of adsorbed liquid per surface area and V the vapor 

specific chemical potential, from (13) we recover the celebrated Gibbs’ adsorption equation, 

namely: 

eff

SV Vd d     (14) 

Using equation (10), the value of the coupling parameter (t) can be calculated as a function 

of the experimental adsorbed layer thickness t. We fitted the coupling term using the 

experimental data reported by Kruk et al.
36

 for Ar adsorption at 87 K on a macroporous silica 

sample. As can be seen in Figure 2, experimental data are reasonably fitted using the 

exponential form given in equation (5). The data were also fitted by a C/t
2
 law (not shown), 

which corresponds to the introduction of the Hamaker constant in the coupling term. 

Surprisingly, the exponential form of the coupling energy is much better than that generally 

used for van der Waals interactions in the disjoining pressure theory.
34,37,38

 There are several 

reasons explaining that the C/t
2
 law might be a rather rough approximation. The first one may 

be that it only relies on 0 K adsorbate/surface potential energy arguments hence not taking 

into account any entropic contribution. The second may be related to the approximations in 

the used adsorbate/surface potential. The usual C/t
2
 law is indeed derived from the two 

successive integrations starting from an oversimplified atom-atom attractive interaction 

potential form [-Cte/r
6
]: the first one is carried out between one atom of the adsorbed film 

phase and all atoms in the solid slab located as a distance z away (the integration is done on a 

semi-infinite space, the result is a -cte/z
3
 dependence of the energy); the second corresponds 

to the inclusion of other atoms in the adsorbed slab and gives the cte/z
2
 dependence. 

Nevertheless, the description of the atom-atom interaction in such an approach is very 

simplistic since it assumes that dispersion in the only source of (attractive) interaction. This is 

certainly not the case when considering the Ar/silica system since the partial charges onto the 

silica species create a non-zero permanent electric field close to the surface that gives rise to 

an attractive so-called polarization or induction interaction. Furthermore focussing on 

dispersion interaction only, it is know since the work of Barker,
39

 that restricting interaction to 

a two-body function only does not allow describing proper interfacial properties at the 

atomistic scale due to missing dispersion three-body interactions (that are not necessarily 

attractive, especially at interfaces). Finally, a complete interaction potential would also 
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include a repulsive term that is often represented as an exponential form that decreases as 

distance increases so as in a Buckingham type of interatomic potential function.
40

 This 

repulsive (positive) term acts and dominates at short range (distance smaller than a few 

angstroms): it ensures the finite compressibility of matter and is related to the spatial extent of 

electronic wave functions. Thus one can infer that successive integrations of such a term will 

give to the final function an exponential behaviour. So the C/t
2
 law rather corresponds to a 

first approximation of a more complex natural situation that is taken into account in 

experimental data enabling deriving a 
 











T

t
t


 exp)( expression. As can be seen in 

Figure 2, (T) is on the order of a few angstroms.  

t (nm)

0.0 0.5 1.0 1.5 2.0

 (
t)

 m
J
/m

2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 

Figure 2. Evolution of the coupling parameter ( )t  as a function of the adsorbed film 

thickness t for argon at 87 K, L=1.394g/cm
3
, using 

 










T

t
t


 exp)(  as a fitting function 

with (T) = 0.278 nm (solid line); using 2/)( tAt   with A=1.896 10
-3

 mJ/m
2
. 

 

Twenty years ago Cheng and Cole 
41

derived a theoretical model for a thick film of simple 

adsorbate such as argon on some model surfaces such as graphite, silica, silicon, etc… within 
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the frame of the Dzyaloshinskii, Lifshiz and Pitazvskii theory (DLP). In particular for thin 

films, they shown that the Frenkel-Halsey-Hill equation (kTln(P/P0)=A’/t
-3

) that describes the 

interaction between adsorbed molecules with a plane substrate in the non retarded limit and 

from which on can recover the A/t
2
 law after a further integration step, corresponds to “a 

difference between the energy of adding an atom to a film of thickness t and the 

corresponding value for a hypothetical substrate constructed of the same material as the 

adsorbate; entropy and many-body terms are neglected”. This is well on line with the above 

discussion on the validity of the A/t
2
 law for describing the interaction between two solid 

bodies at short distances and missing three-body and higher order interactions that may 

contribute up to ~20% of the film/substrate interaction energy. 

 

Application to capillary condensation in rigid cylindrical mesopores 

We now extend the previous model to gas-liquid transition of simple fluids in cylindrical 

mesopores having a finite length. Let us consider a cylindrical pore of radius R0 having a 

length L. At low pressures, the pore surface is covered by a nanoscopic adsorbed film having 

a thickness t = R0 – R (see Figure 3). The system is in equilibrium with the gas phase 

contained in the remaining of the pore volume, i.e. a cylindrical core of radius R. We note that 

this three phases system (adsorbent + adsorbed film + gas corresponding to phase 1, 2 and 3 

in Figure 1) is in equilibrium with an external bulk reservoir imposing its chemical potential  

and temperature so that the pressure is also imposed. The Gibbs free energy per unit of length 

is given by:
32

  

 
   

2 2 2 0 0
0 0 0

( )
2 2 2 exp expV L LS LS

R R RR
P R P R R R R SR

L T T

     
                       

 
(15) 

In addition, it is convenient to rewrite the change in grand free energy in equation (15) as a 

sum of a constant contribution and a contribution that depends on R, i.e. 0

( )
( )

R
F F R

L


 


:  
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2

0 0 02L LSF P R R     
(16) 

 
2 0

0

0

( ) ln 2 2 expV
L LV

P R R
F R R kT R SR

P T

   
             

 
(17) 

In (17), since  0R T   we neglected the last term in (16), while the Kelvin law (7) has 

been used. 

 

 

Figure 3. Schematic view of the cross section of a cylindrical pore of radius R0 (adsorbent) 

showing the equilibrium between an adsorbed film at the pore surface and the gas phase in the 

pore center. The thickness of the adsorbed film is t = R0 –R. 

 

F(R) at constant temperature T is shown in Figure 4 as a function of R for different values of 

the gas pressure, PV. The grand free energy exhibits two minima at low gas pressures. The 

stable solution 0R   consists of a configuration where an adsorbed film at the pore surface is 

in equilibrium with the gas phase located in the pore centre. The metastable solution R = 0 

corresponds to the situation where the pore is completely filled with the liquid. As the 

pressure increases, the thickness of the adsorbed film increases and the minimum 0R   is 

shifted toward the pore centre R = 0. The equality of the two minima defines the pressure, Pe, 

where capillary condensation should occur, provided that such a first order phase transition is 

L 

R 

R0 
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an at equilibrium process. At this particular pressure, the system should exhibit phase 

coexistence between parts of the pore that are completely filled and parts where the system is 

composed of an adsorbed film in equilibrium with the gas. From a mathematical point of 

view, Pe must verify the conditions ( ) (0)R   and 
d ( )

0
R

dR


 . After a little algebra, it can 

be shown that these two criteria imply:
32,42

  

0

2 2
ln 1

2

e LV

L

P

P kT R R

    
     

    
 

(18) 

As previously noted by Celestini,
32

 equation (18) is a generalized version of the modified 

Kelvin-Laplace equation,
9,10

 corrected for curvature effect due to the finite size of the pore 

radius. Given that   is of the order of a few Å (see above), equation(18) reduces to the Kelvin 

equation for large pores 0R , i.e. when 
2

2R



 
 ~ 0. This generalized Kelvin equation can 

be considered as an alternative route to the modified Kelvin equation used in standard pore 

characterization methods, which include ad hoc corrections for the presence of an adsorbed 

film.
9,10,43,44,45,46,47

 In contrast, the present model includes de facto the adsorbed film and 

allows us to predict the dependence on the gas pressure of its thickness, t = R0 – R. It can be 

used to calculate entire adsorption/desorption isotherm (including condensation and 

evaporation phenomena) as shown below. The curvature term in equation (15) gathered with 

the LV surface tension is formally equivalent to the well-know Tolman expression of surface 

tension for curved interfaces. The physical origin of this curvature correction is a difference 

between the distance of the equimolar surface and the surface of tension. As it is related to a 

curved interface, the LV surface tension should also obey the Tolman expression. As a result, 

Equation (17) can be rewritten: 
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   
2

2 1
1

2
LV LVR R

R R


  



  
     

    

 
(19) 

The last equation is again formally close to the Tolman equation,
48,49,50

 originally derived for 

finite size objects such as clusters or droplets.  can be then considered as being equal or 

proportional to the Tolman length with the same temperature dependence.
51

 Furthermore, we 

note that the plus sign in equations (18) and (19) is the consequence of the problem symmetry, 

i.e. a gas phase surrounded by a liquid layer. This can be discussed in term of the sign of the 

Tolman length itself. A positive value for the Tolman length corresponds to a situation in 

which the interface tends to curve toward the liquid phase, whereas a negative Tolman length 

implies a preferred curvature toward the vapor phase. The actual critical behaviour of the 

Tolman length was recently addressed by Anisimov who showed that it depends on the level 

of theory and that the amplitude of its divergence at a critical point is related to the degree of 

asymmetry in the fluid phase coexistence.
52

 In the case of a van der Waals fluid in a droplet, 

the Tolman length is finite (and negative) at the bulk critical point temperature [=0.2


 

Coming back to the analysis of free energy curves in Figure 4, F(R) still exhibits two minima 

for pressures above Pe but the deepest solution is located at R = 0, which corresponds to the 

pore completely filled with the liquid. The minimum R = RK (adsorbed phase + gas) now 

corresponds to a metastable state. Condensation within the pore occurs as the pressure reaches 

Pc that corresponds to a limit of metastability; the condition of spontaneous liquid nucleation 

thus obeys the condition 
2

2

d ( ) d ( )
0

R R

dR dR

 
  , which implies that:

32,42
  

0

ln 1c LV

L

P

P kT R R

    
     

   
 

(20) 
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Figure 4. F(R) at constant temperature T for increasing pressures of the gas phase, PV (from 

bottom to top). The core radius R is in nm, the grand free energy   is in 10
-19

 J (see text). 

 

For an infinitely long pore, evaporation can only occur through a cavitation process i.e. 

nucleation of a gas bubble within the cylindrical pore.
54,55,56,57,58,59

 It can be shown with 

similar calculations to those described above that cavitation takes place at a pressure close to 

the limit of stability of the metastable liquid phase (spinodal limit). Such a nucleation process 

occurs at very low pressure, Pd, leading to a very large hysteresis loop. 

For real porous materials made up of regular cylindrical pores having a finite length (MCM-

41, SBA-15), cavitation is not a relevant evaporation mechanism since the confined liquid 

phase is at all pressures in equilibrium with the external gas phase through the pore opening. 

As a result, the gas + adsorbed phase system is spontaneously nucleated within the pore when 

the pressure reaches the equilibrium transition pressure Pe. Previous models of capillary 

condensation also assumed that capillary evaporation occurs at the equilibrium pressure.
20,60,61

 

F(R) 
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In the present model, capillary condensation occurs at the pressure Pc, i.e. corresponds to a 

transition from the metastable gas + adsorbed phase to the stable liquid phase. We know from 

previous gas lattice calculations
64

 and molecular simulations
62,65

 that such a metastable 

capillary condensation for pores having a finite length (open at both ends) is close to that 

predicted for infinitely long pores. One can see that the capillary condensation pressure, Pc, is 

larger than the equilibrium pressure, Pe. This implies that the adsorption/desorption curve is 

irreversible, in agreement with experimental, theoretical, and simulation studies for 

unconnected mesopores, which have shown that the adsorption/desorption isotherms exhibit a 

hysteresis loop that should shrink as temperature increases and disappear at a so-called Tcc 

temperature.
1
 

To summarize, in the present model, two different gas/liquid transition pressures are 

predicted; metastable condensation Pc and at equilibrium transition Pe, which corresponds to 

an equilibrium evaporation process for a finite length pore. The (adsorbed film+gas) / liquid 

transition of the fluid within the pore is described as a first-order transition (involving phase 

coexistence and metastable states) in which the capillary condensation hysteresis is a van der 

Waals loop of the confined fluid. In addition, there is a critical temperature, Tcc, that 

corresponds to the temperature at which the hysteresis loop disappears in a mean field van der 

waals picture. We note that density functional theory (DFT)
16,63,64,65

 and van der Waals 

theories
66,67

 of confined fluids (mean field theories) also describe capillary condensation as a 

first order transition. The present model allows very fast estimates of the transition pressures 

that are in good agreement with experimental adsorption/desorption isotherms (see below). 

Interestingly, the present model, which includes de facto the existence of the adsorbed film, 

can be seen as a generalization of Cohan’s theory for adsorption/condensation in pores open 

at both ends.
20
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Results and Discussion 

Parameterization of the model: The parameters involved in this description of the capillary 

phenomenon in cylindrical pore fall into two categories: the first is concerned with physical 

parameters that can be obtained from other pieces of experiments; the second set contains the 

disposable parameters that have to be fitted against adsorption/desorption experiments. In a 

previous section, we have demonstrated that the choice of an exponential form for the 

coupling term in the Gibbs free energy can be derived from experimental data for adsorption 

on macroporous systems. 

As shown below, we used (T) as an adjustable parameter for a whole series of 

adsorption/desorption data for a same MCM-41 materials at different temperatures in order to 

determine its dependence with temperature. Among other physical parameters, surface 

tensions of the vapor/adsorbent interface, 
SV

, and of the adsorbate/adsorbent interface, 
LS

, 

can be estimated from microcalorimetry measurements of the isosteric differential enthalpy of 

adsorption Qst at low coverage and at the capillary condensation pressure, respectively. This is 

done by converting the isosteric heat in energy per mole into an energy per unit of surface 

area using tabulated values for molecular cross-sections of the adsorbate (a=[/2]
2
 = 0.0908 

nm
2 for Ar and 0.1075 nm

2 for N2; σ is the molecular kinetic diameter σ=3.4 Å for Ar and 

σ=3.7 Å for N2). For silica-based MCM-41 materials
10

, we found SV = 0.217 J/m
2
 (Qst ~ 15 

kJ/mol) and SL = 0.100 J/m
2
 (Qst ~ 6.5 kJ/mol) for N2 and SV = 0.238 J/m

2
 (Qst ~ 13 kJ/mol) 

and SL = 0.102 J/m
2
 (Qst ~ 7.0 kJ/mol) for Ar. Note that the present work reports some 

comparison between the model and experiment in the case of confined argon only. It is shown 

that the model allows a quantitative description of both adsorption and capillary phenomenon. 

Similar quantitative results were also obtained in the case of nitrogen but are not reported here 

for the sake of shortness and clarity. 
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It is clear that surface tensions are related to free energy hence there is not only an enthalpy 

contribution but also an entropic term in them. Here we choose to consider these entropy 

contributions in a single fudge parameter Seffective (that contains mainly the entropy gas—

liquid entropy difference). Qst being positive (Qst=-Hads) , Seffective has to be negative. In 

total, the spreading parameter S (see equation 3) writes 

   
LVSeffective

stst

a

condQQ
S  




0
 

(21) 

Concerning the temperature behaviour of the liquid-gas surface tension (the liquid being here 

the adsorbed film on the pore cylindrical wall), one can assume that it writes:  

   
µ

cc

LVLV
T

T
TT 








 10  

(22) 

The idea is that above Tcc, there is no more a (clear) adsorbate film/gas interface but a 

inhomogeneous confined fluid. With this description, LV becomes zero at T=Tcc giving Tcc the 

status of a confined critical temperature associated with the first order phase  [adsorbate film+ 

gas] to [condensed fluid] transition with the existence of an adsorbate-film/condensed liquid 

phase coexistence as shown in Figure 4. As R0 tends to infinity, Tcc tends to Tc
3D

 hence the 

critical exponent  associated with the gas-liquid surface tension should recover the universal 

value of 1.26. γLV(T=0) is taken as the gas-liquid surface tension at zero temperature as 

calculated from atomistic approaches (γLV(T=0)=0.0374 J/m
2
 for Ar and γLV(T=0)=0.0293 

J/m
2
 for N2

 68
). In the model presented in this paper, temperature and curvature dependence 

of the gas-liquid surface tension are treated as independent variable, hence written as the 

product of two distinct terms. Another consequence of equation (22) is to make the model 

inoperative at T=Tcc exactly since the gas-liquid surface tension becomes zero. It is certainly 

the simplest way to produce a closing hysteresis loop model with increasing temperature 
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conforming to the experimental temperature behaviour that is given by the 

relation D

ccc T
R

T 3

0

21





   .
11,21,69,70,71

 

To summarize, the three disposable parameters of the present model are 1) the µ exponent in 

the definition of LV that is only pore-size dependent, 2) the entropy component of SV and SL, 

gathered in Seffective, and 3) ξ(T). The other parameters are the density of the gas phase 

g taken as that of a ideal gas and that of the (bulk) liquid or the adsorbed film, L, assumed to 

be that of the corresponding bulk Lennard-Jones fluid. Note that molecular simulation of 

capillary condensates have shown that their density is close to that of the bulk liquid.
72

 The 

saturating vapour pressure was calculated using the Kofke equation of state
73

 using both the 

energy and size Lennard-Jones potential parameters (ɛ=120 K and =3.4 Å in the case of 

argon, ɛ=94 K and =3.7 Å for nitrogen). We also considered the bulk critical temperature of 

the model fluid as defined by the Lennard-Jones energy parameter (Tc
3D

= 1.31ɛ). As a 

consequence, the temperature values in the various calculations, were considered with respect 

to this value while experimental data were located in temperature with respect to the 

experimental Tc
3D

 value (150.7 K for Ar and 126.2 K for N2). 

Calculation of argon condensation/evaporation isotherms: By fitting against one 

hysteretic adsorption isotherm, one can obtain the three adjustable parameters (Seffective , µ and 

) for a given fluid and pore radius at one temperature. The adsorption isotherm is calculated 

from a set of F(R) versus R curves (similar to those presented in Figure 4): the adsorbate film 

thickness is transformed into an adsorbed quantity (for instance cm³ STP per gram of porous 

material) by assuming that it has the same density as that of the bulk liquid at the same 

temperature and by considering the specific surface area (m²/g) as a scale parameter which in 

turn can be transformed into a specific length (m/g) knowing the pore radius (note that the 
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experimental specific length in the case of MCM type of mesoporous silica materials, is on 

the order of 10
+19

m/g!). In fine, a single fit of the adsorption branch of one 

adsorption/desorption isotherm allows the determination of the specific surface area with 

certainly a better accuracy than the standard BET approach for specific surface areas 

determination. Here we make a clear difference between the BET model
68

 that is an interesting 

simple model for multilayer adsorption on a plane surface and the BET method for assessing 

specific surface area
10

 that, in essence, ignores the main assumption of the BET model stating 

that adsorbed molecules in different adsorption sites do not interact (even angstromly close); 

the only adsorbate-adsorbate interaction that is retained being the energy of molecules 

adsorbed on the top of each other in the same adsorption site. In the BET method, one 

considers the surface as covered with a dense packing of (hence interacting) adsorbed 

molecules forming the adsorbed film. In the present work, the existence of a growing dense 

(liquid-like) adsorbed film is naturally described. With the model presented in this paper, one 

also predicts hysteretic isotherms with vertical jumps at condensation and (equilibrium) 

evaporation in agreement with other theoretical (DFT) or simulation studies of a simple fluid 

confined in cylindrical mesopores. Recent simulation and theoretical results in disordered and 

constricted mesopores have shown that these extended defects are responsible for the non-

verticality of both adsorption/desorption branches in condensation/evaporation 

isotherms.
24,25,26,55,56

 We shall demonstrate that with the present model, the equilibrium 

evaporation branch is naturally located close to the pressure corresponding to hysteresis loop 

closure point. We tested the model by comparing its performances first with experimental 

data for argon measured at constant pore size but with varying temperature and second with 

constant temperature experimental results measured for a variety of MCM pore sizes.  

Figure 5 presents some results for argon confined in a 4.2 nm pore (in diameter) as a function 

of temperature. The various adsorption/desorption isotherms were obtained with the fixed 
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values µ=0.4 (adjusted on the first case then kept constant) and LV=-0.075 J/m
2
 and  as the 

only adjustable parameter. One can see that the agreement with experiment 
74

 is rather good 

for such a simple (nearly analytical) model. Note (i) that the model allows a very good 

description of the adsorbed film at all temperatures except when very close to Tcc and (ii) that 

the temperature description of the hysteresis width is good up 93% of the value of Tcc thus 

showing good performances for temperatures not too close to this critical value. It is not 

surprising since the model presented here is in essence a mean field approach that does not 

allow considering thermally-driven fluid density fluctuations. As expected, the model 

indicates that desorption in finite length pores occurs close to equilibrium. Indeed the 

desorption line in the theoretical curves corresponds to the equilibrium pressure as given by 

the generalized Kelvin equation. Interestingly, this simple model for capillary condensation 

does not require a geometrical description of interfacial menisci as originally proposed in the 

Cohan approach 
20

 that explains the hysteresis loop in adsorption/desorption isotherms as a 

consequence of the change in the symmetry of the gas/liquid interface from cylindrical to 

hemispherical shape. Finally, Figure 5 shows that the relative height of the capillary jump 

with respect to the adsorbed amount at the onset of condensation is well reproduced, which 

shows the ability of the model in estimating the specific surface area. The model presented 

here does not give an account of the confined liquid compressibility as shown in Figure 5. 

Interestingly, ξ mainly acts on the lower part of the adsorption/desorption isotherm prior to 

capillary phenomena allowing a good fitting of experimental data (see Figure 5). Figure 6 

gives the evolution of the ξ parameter as a function of [t=1-T/Tc
3D

]. ξ linearly decreases with 

temperature in a way very similar to that found for nanoclusters within the van der Wall mean 

field model.
53

 By extrapolating  at 01 






 
cT

Tt , one recovers a value of  close to 0.2. 

These arguments are in favour for identifyng  to the Tolman length. As mentioned above, the 

present model is in essence a mean field approach. Therefore, one expects to find mean-field 
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results compatible with those established in the context of density functional theories for a 

liquid droplet coexisting with a gas phase. These theories give consistent results with regard 

to the mean-field value of the Tolman length for simple liquids: it is only weakly temperature 

dependent reaching a value at the critical point which is a small fraction of the molecule 

diameter and negative, and is given by the difference of the correlation lengths of two bulk 

phases. Tolman himself showed that the Tolman length can be expressed in terms of the 

adsorbed amount at the surface of tension at coexistence.
48,49

 In our geometry (gas phase 

surrounded by a layer of liquid as a consequence of the adsorption process), it is not 

surprising to find a positive Tolman length. Working at constant pore size, the calculated data 

in Figure 5 were obtained for constant value of the µ exponent (see equation 21). Figure 7 

presents calculated adsorption/desorption isotherms for Ar at 87 K confined in MCM-41 

pores of various sizes. Since these are constant temperature calculations (Tcal=91.2 K), they 

were carried out for a constant value Å. This value is not that expected from the linear 

relationship given in Figure 6 for the same temperature (from Figure 6, one expects Å). 

Since  has the status of the Tolman length and therefore is a direct consequence of the 

adsorbed film thickness, one can conceive that it depends on the system thermodynamics, 

particularly its adsorbate-adsorbent contribution. As a result,  must depend on the chemical 

nature of the matrix but also on its density. As a consequence, one has to consider the Tolman 

length as being dependent of the adsorbent porosity. We propose to correct  for fluid-

adsorbent interaction by multiplying it by the amount of solid in the porous material and given 

by (1-), being the porosity. As already mentioned, data reported in Figure 6 were obtained 

for a cylindrical pore of radius 2.2 nm; the corresponding  parameter was estimated equal to 

2.6 Å. From Figure 7b, experimental data for a pore with radius equal 2.1 nm were best fitted 

with a  parameter equal to 2.2 Å. These two porous materials have cylindrical pores of 

(almost) the same diameter but have different porosity and. From a simple algebra,  
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Figure 5: Ar adsorption isotherm in a 4.2 nm diameter pore at various temperatures. (a-f) 

comparison with experiment (points), model (lines), (g) calculated isotherms as the 

temperature approaches Tcc.  Experiment and model are plotted at equal T/Tcc ratio.  
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one  can show that:  

 
 

85.0
1

1
1

2

1

2

2

1 




sp

sp

sp

sp

S

S

V

V




 

(23) 

where Vsp
i
 and Ssp

i
 are the specific volume and surface area of material i ( 2

spV  = 460 cm
3
 

STP/g, 1

spV  = 540 cm
3
 STP/g, and 2

spS =550 m
2
/g, 1

spS =650 m
2
/g). The values for specific 

surface area are given by the model while specific volume data can be directly obtained from 

experimental adsorption/desorption isotherms at pressures larger than that corresponding to 

the capillary pressure, assuming that the confined capillary liquid has the same density as in 

the bulk. This latter assumption is supported by atomistic simulations of confined simple fluid 

in mesopores.
75

 Assuming that the two materials have the same pore size (within 1 Å), we 

propose a porosity independent  parameter that can be obtained following the relationship: 

  material 1  (24) 

Where the porosity dependent material  parameter is the one obtained by fitting against the 

experimental data. 

Thus comparing the two materials, at the same temperature, one gets 

 
 

85.0
6.2

2.2

1

1
2

1

2

1 




material

material








 

(11) 

in good agreement with the value obtained from geometric considerations (see equation 23). 

For a given porous material, there is a simple relation between its specific pore volume and its 

density;   11
wall

spV
  where wall is equal to 2.2 g/cm

3
 for silica.  

One can see from Figure 7 that the model predicts very well the adsorbed film for all the 

considered pore sizes. The hysteresis loop is also well described as long as the pore size is not 

too small for the same reasons as for the temperature study at constant pore size: decreasing 

the pore size at constant temperature is a way to make the fixed temperature matching Tcc 
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hence reaching the model capability. Figure 8 gives the evolution of the µ exponent as a 

function of pore size. As a validation of the present approach, µ does increase as the pore size 

increases and recovers the known value of the critical exponent of the surface tension for the  

1-T/T
c
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Figure 6: (Circles): Evolution of  (reduced by the molecular kinetic diameter) as a function 

of the reduced temperature (with respect to Tc). The line is a linear regression. 

 

flat interface (µ=1.26). We have characterized the evolution of the main model parameters, 

namely  and µ, with their corresponding variables T and R0 respectively. Interestingly the 

entropy contribution to the spreading parameter S (see Equation 21) is found again constant at 

Seffective=-0.075 J/m
2
 (similar calculation for nitrogen gives Seffective constant at about -0.035 

J/m
2
). This is also the case for enthalpic contributions to the spreading parameter S. This 

reflects the fact that the isosteric heat of adsorption variations with loading is very much 

insensitive to temperature as found in Grand Canonical Monte-Carlo simulation of adsorption 

of argon in many silica pores.
76
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Figure 7: Ar adsorption at 87 K in various MCM type pores (a-d) comparison with 

experiment (points), model (lines)   
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Figure 8: µ exponent in equation (22) as a function of the reciprocal of the pore size. The 

line is a linear regression. 

 

Conclusion 

In this paper, we have presented a mean field model for capillary condensation and 

evaporation of a molecular fluid confined in a finite cylindrical pore. This approach allows 

considering in a very compact way both surface adsorption and capillary condensation and 

evaporation transitions. We devoted a special attention to give to all used quantities and 

parameters a well defined physical meaning. Their behaviour as a function of temperature and 

confinement is presented. We have shown in the case of a plane surface that this approach, 

inspired by the work of Celestini (Phys. Lett. A, 1997, 228, 84), allows the Gibbs adsorption 

equation to be recovered. Furthermore in the case of a fluid confined to a finite length 

cylindrical pore, we have demonstrated that the Tolman length plays a central role in 

µ 
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describing surface and confinement phenomena: a generalized Kelvin-Tolman equation could 

be derived that takes into account surface curvature effects. The model performances are 

checked against experimental data for Ar confined in MCM-41 materials of various pore sizes 

and at different temperatures by calculating full adsorption/desorption isotherms. Along an 

isotherm, it is shown that condensation occurs at the end of a metastable range of pressure 

while evaporation occurs at equilibrium. This model reasonably reproduces experimental 

results obtained for real solids such MCM-41 nanoporous silica provided that calculations are 

carried out at a temperature not too close to Tcc defined as the pore critical temperature. This 

is due to the mean-field character of our approach. From a practical point of view, due to its 

simplicity and tractability, we have shown that our simple (nearly) analytical and integrated 

approach can be used for characterization purposes (giving realistic estimates of the specific 

surface area and mean pore size) from the fit of a single experimental adsorption/desorption 

isotherm curve. It can be viewed as an alternative to the BET, BJH/de Boer and FHH 

characterization tools of porous materials. 
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