Skip to Main content Skip to Navigation
Journal articles

Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions

Abstract : This work is devoted to the numerical study of the Cahn-Hilliard equation with dynamic boundary conditions. A spatial finite-volume discretization is proposed which couples a 2d-method in a smooth connected domain and a 1d-method on its boundary. The convergence of the sequence of approximate solutions is proved and various numerical simulations are given.
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01096996
Contributor : Flore Nabet <>
Submitted on : Wednesday, June 17, 2015 - 10:04:16 AM
Last modification on : Thursday, January 23, 2020 - 6:22:12 PM
Document(s) archivé(s) le : Tuesday, September 15, 2015 - 5:41:27 PM

Identifiers

Citation

Flore Nabet. Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2015, ⟨10.1093/imanum/drv057⟩. ⟨hal-01096996⟩

Share

Metrics

Record views

298

Files downloads

336