, The large subunit (purple) contains the [NiFe] cluster. H 2 accesses to or escapes from the active site through hydrophobic gas channels. The electrons are transferred to or from the active site via a chain made of three FeS clusters in the small subunit (cyan). The proximal and distal clusters are [4Fe4S] clusters, and the medial cluster is a [3Fe4S] cluster. B, putative catalytic cycle involving states (NiSI, NiR, and NiC) observed by spectroscopy under non-catalytic conditions. FIGURE 2. A, location of Thr-18 S in the crystal structure of WT D. fructosovorans [NiFe]-hydrogenase in the unready NiA/NiSU state (41). B, protein sequence alignment showing that Thr-18 S

D. F. and A. V. ,

C. E. Hatchikian, A. S. Traore, V. M. Fernandez, and R. Cammack, Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans, Eur. J. Biochem, vol.187, pp.635-643, 1990.

D. Lacey, A. L. Fernandez, V. M. Rousset, M. Cammack, and R. , Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies, Chem. Rev, vol.107, pp.4304-4330, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00335154

H. S. Shafaat, O. Rüdiger, H. Ogata, and W. Lubitz, NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions, Biochimica. et Biophysica. Acta, vol.1827, pp.986-1002, 2013.

W. Lubitz, E. Reijerse, and M. Van-gastel, NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques, Chem. Rev, vol.107, pp.4331-4365, 2007.

M. Bruschi, M. Tiberti, A. Guerra, D. Gioia, and L. , Disclosure of key stereoelectronic factors for efficient H 2 binding and cleavage in the active site of [NiFe]-hydrogenases, J. Am. Chem. Soc, vol.136, pp.1803-1814, 2014.

A. L. De-lacey, E. C. Hatchikian, A. Volbeda, M. Frey, J. C. Fontecilla-camps et al., Infrared-spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio gigas, J. Am. Chem. Soc, vol.119, pp.7181-7189, 1997.

B. Bleijlevens, F. A. Van-broekhuizen, A. L. De-lacey, W. Roseboom, V. M. Fernandez et al., The activation of the [NiFe]-hydrogenase from Allochromatium vinosum: an infrared spectro-electrochemical study, J. Biol. Inorg. Chem, vol.9, pp.743-752, 2004.

A. Pardo, A. L. De-lacey, V. M. Fernández, H. J. Fan, Y. Fan et al., Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II), J. Biol. Inorg. Chem, vol.11, pp.286-306, 2006.

M. M. Roessler, R. M. Evans, R. A. Davies, J. Harmer, A. et al., EPR spectroscopic studies of the Fe-S clusters in the O 2 -tolerant [NiFe]-hydrogenase Hyd-1 from Escherichia coli and characterization of the unique [4Fe-3S] cluster by HYSCORE, J. Am. Chem. Soc, vol.134, pp.15581-15594, 2012.

C. Greco, V. Fourmond, C. Baffert, P. H. Wang, S. Dementin et al., Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes, Energy Environ. Sci, vol.7, pp.3543-3573, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211585

A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, pp.580-587, 1995.

H. Ogata, S. Hirota, A. Nakahara, H. Komori, N. Shibata et al., Activation process of [NiFe] hydrogenase elucidated by high-resolution x-ray analyses: conversion of the ready to the unready state, Structure, vol.13, pp.1635-1642, 2005.

V. H. Teixeira, C. M. Soares, and A. M. Baptista, Proton pathways in a [NiFe]-hydrogenase: a theoretical study, Proteins, vol.70, pp.1010-1022, 2008.

I. Fdez-galván, A. Volbeda, J. C. Fontecilla-camps, and M. J. Field, A QM/MM study of proton transport pathways in a [NiFe] hydrogenase, Proteins, vol.73, pp.195-203, 2008.

A. Volbeda, P. Amara, C. Darnault, J. M. Mouesca, A. Parkin et al., X-ray crystallographic and computational studies of the O 2 -tolerant [NiFe]-hydrogenase 1 from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.5305-5310, 2012.

I. Sumner and G. A. Voth, Proton transport pathways in [NiFe]-hydrogenase, J. Phys. Chem. B, vol.116, pp.2917-2926, 2012.

E. Szori-doroghazi, G. Maróti, M. Szori, A. Nyilasi, G. Rákhely et al., Analyses of the large subunit histidine-rich motif expose an alternative proton transfer pathway in [NiFe] hydrogenases, PLoS ONE, vol.7, p.34666, 2012.

R. Cammack, M. Frey, and R. Robson, Hydrogen as a Fuel, Learning from Nature, pp.77-80, 2001.

A. Abou-hamdan, S. Dementin, P. P. Liebgott, O. Gutierrez-sanz, P. Richaud et al., Understanding and tuning the catalytic bias of hydrogenase, J. Am. Chem. Soc, vol.134, pp.8368-8371, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01977597

T. Yagi, S. Ogo, and Y. Higuchi, Catalytic cycle of cytochrome-c3 hydrogenase, a [NiFe]-enzyme, deduced from the structures of the enzyme and the enzyme mimic, Int. J. Hydrogen Energy, vol.39, pp.18543-18550, 2014.

T. Yagi and Y. Higuchi, Studies on hydrogenase, Proc. Jpn. Acad, vol.89, pp.16-33, 2013.

S. Dementin, B. Burlat, A. L. De-lacey, A. Pardo, G. Adryanczyk-perrier et al., A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase, J. Biol. Chem, vol.279, pp.10508-10513, 2004.

A. Gebler, T. Burgdorf, A. L. De-lacey, O. Rüdiger, A. Martinez-arias et al., Impact of alterations near the [NiFe] active site on the function of the H 2 sensor from Ralstonia eutropha, FEBS. J, vol.274, pp.74-85, 2007.

P. P. Liebgott, F. Leroux, B. Burlat, S. Dementin, C. Baffert et al., Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase, Nat. Chem. Biol, vol.6, pp.63-70, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677689

F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda et al., Experimental approaches to kinetics of gas diffusion in hydrogenase, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.11188-11193, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336010

M. Rousset, Y. Montet, B. Guigliarelli, N. Forget, M. Asso et al., NiFe] hydrogenase by site-directed mutagenesis, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.11625-11630, 1998.

C. Léger, S. Dementin, P. Bertrand, M. Rousset, and B. Guigliarelli, Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry, J. Am. Chem. Soc, vol.126, pp.12162-12172, 2004.

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H 2 of H 2 -evolution by hydrogenases, Chem. Commun. (Camb), vol.49, pp.6840-6842, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268212

S. Dementin, B. Burlat, V. Fourmond, F. Leroux, P. P. Liebgott et al., Rates of intra-and intermolecular electron transfers in hydrogenase deduced from steady-state activity measurements, J. Am. Chem. Soc, vol.133, pp.10211-10221, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01977634

A. Volbeda, E. Garcin, C. Piras, A. L. De-lacey, V. M. Fernandez et al., Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands, J. Am. Chem. Soc, vol.118, pp.12989-12996, 1996.

X. Vernède and J. C. Fontecilla-camps, A method to stabilize reduced and or gas-treated protein crystals by flash-cooling under a controlled atmosphere, J. Appl. Crystallogr, vol.32, pp.505-509, 1999.

W. Kabsch, Xds. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber et al., Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases, J. Biol. Inorg. Chem, vol.10, pp.239-249, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00335177

G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner et al., REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.355-367, 2011.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

S. Dementin, F. Leroux, L. Cournac, A. L. De-lacey, A. Volbeda et al., Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant, J. Am. Chem. Soc, vol.131, pp.10156-10164, 2009.

P. P. Liebgott, A. L. De-lacey, B. Burlat, L. Cournac, P. Richaud et al., Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site, J. Am. Chem. Soc, vol.133, pp.986-997, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01977599

B. Guigliarelli, C. More, A. Fournel, M. Asso, E. C. Hatchikian et al., Structural organization of the Ni and (4Fe-4S) centers in the active form of Desulfovibrio gigas hydrogenase. Analysis of the magnetic interactions by electron paramagnetic resonance spectroscopy, Biochemistry, vol.34, pp.4781-4790, 1995.

A. Abou-hamdan, B. Burlat, O. Gutiérrez-sanz, P. P. Liebgott, C. Baffert et al., O 2 -independent formation of the inactive states of NiFe hydrogenase, Nat. Chem. Biol, vol.9, pp.15-17, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01556905

A. Volbeda, L. Martin, E. Barbier, O. Gutiérrez-sanz, A. L. De-lacey et al., Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states, J. Biol. Inorg. Chem, vol.20, pp.11-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166131

S. Dementin, V. Belle, P. Bertrand, B. Guigliarelli, G. Adryanczyk-perrier et al., Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter-and intramolecular electron transfers, J. Am. Chem. Soc, vol.128, pp.5209-5218, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00335157

R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta, vol.811, pp.265-322, 1985.

B. Ginovska-pangovska, M. H. Ho, J. C. Linehan, Y. Cheng, M. Dupuis et al., Molecular dynamics study of the proposed proton transport pathways in [FeFe]-hydrogenase, Biochim. Biophys. Acta, vol.1837, pp.131-138, 2014.

A. J. Cornish, K. Gärtner, H. Yang, J. W. Peters, and E. L. Hegg, Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum, J. Biol. Chem, vol.286, pp.38341-38347, 2011.

A. Volbeda, B. Burlat, L. Sébastien-dementin-richaud, B. Cournac, A. L. Guigliarelli et al., hydrogenase A Threonine Stabilizes the NiC and NiR Catalytic Intermediates, vol.290, pp.8550-8558, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149507

, J. Biol. Chem

, Access the most updated version of this article at doi