B. Lower and D. Bazylinski, The Bacterial Magnetosome: A Unique Prokaryotic Organelle, Journal of Molecular Microbiology and Biotechnology, vol.23, issue.1-2, pp.63-80
DOI : 10.1159/000346543

M. Pósfai, B. Moskowitz, B. Arató, D. Schüler, C. Flies et al., Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1, Earth and Planetary Science Letters, vol.249, issue.3-4, pp.3-4444, 2006.
DOI : 10.1016/j.epsl.2006.06.036

R. Blakemore, Magnetotactic bacteria. Science (80 -), pp.377-386, 1975.

C. Lefèvre and D. Bazylinski, Ecology, Diversity, and Evolution of Magnetotactic Bacteria, Microbiology and Molecular Biology Reviews, vol.77, issue.3, pp.497-526, 2013.
DOI : 10.1128/MMBR.00021-13

E. Delong, R. Frankel, and D. Bazylinski, Multiple Evolutionary Origins of Magnetotaxis in Bacteria, Science, vol.259, issue.5096, pp.803-809, 1993.
DOI : 10.1126/science.259.5096.803

T. Sakaguchi, J. Burgess, and T. Matsunaga, Magnetite formation by a sulphate-reducing bacterium, Nature, vol.365, issue.6441, pp.47-56, 1993.
DOI : 10.1038/365047a0

C. Flies, J. Peplies, and D. Schüler, Combined Approach for Characterization of Uncultivated Magnetotactic Bacteria from Various Aquatic Environments, Applied and Environmental Microbiology, vol.71, issue.5, pp.2723-2754, 2005.
DOI : 10.1128/AEM.71.5.2723-2731.2005

C. Lefèvre, N. Viloria, M. Schmidt, M. Pósfai, R. Frankel et al., Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria, The ISME Journal, vol.238, issue.2, pp.440-50, 2012.
DOI : 10.1038/ismej.2011.97

S. Kolinko, C. Jogler, E. Katzmann, G. Wanner, J. Peplies et al., Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3, Environmental Microbiology, vol.45, issue.7, pp.1709-1730, 2012.
DOI : 10.1111/j.1462-2920.2011.02609.x

T. Sakaguchi, A. Arakaki, and T. Matsunaga, Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles., International Journal of Systematic and Evolutionary Microbiology, vol.52, issue.1, pp.215-236, 2002.
DOI : 10.1099/00207713-52-1-215

N. Zeytuni, D. Baran, G. Davidov, and R. Zarivach, Inter-phylum structural conservation of the magnetosome-associated TPR-containing protein, MamA, Journal of Structural Biology, vol.180, issue.3, pp.479-87, 2012.
DOI : 10.1016/j.jsb.2012.08.001

C. Lefèvre and L. Wu, Evolution of the bacterial organelle responsible for magnetotaxis. Trends in Microbiology, pp.534-577, 2013.

C. Lefèvre, D. Trubitsyn, F. Abreu, S. Kolinko, L. De-almeida et al., Monophyletic origin of magnetotaxis and the first magnetosomes, Environmental Microbiology, vol.62, issue.8, pp.2267-74, 2013.
DOI : 10.1111/1462-2920.12097

A. Komeili, H. Vali, T. Beveridge, and D. Newman, Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation, Proceedings of the National Academy of Sciences, vol.101, issue.11, pp.3839-3883, 2004.
DOI : 10.1073/pnas.0400391101

D. Murat, A. Quinlan, H. Vali, and A. Komeili, Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5593-5601, 2010.
DOI : 10.1073/pnas.0914439107

H. Nakazawa, A. Arakaki, S. Narita-yamada, I. Yashiro, K. Jinno et al., Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria, Genome Research, vol.19, issue.10
DOI : 10.1101/gr.088906.108

C. Lefèvre, D. Trubitsyn, F. Abreu, S. Kolinko, C. Jogler et al., Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis, Environ Microbiol, vol.15, pp.2712-2747, 2013.

D. Yamamoto, A. Taoka, T. Uchihashi, H. Sasaki, H. Watanabe et al., Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy, Proceedings of the National Academy of Sciences, vol.107, issue.20, pp.9382-9389, 2010.
DOI : 10.1073/pnas.1001870107

N. Zeytuni, E. Ozyamak, K. Ben-harush, G. Davidov, M. Levin et al., Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly, Proceedings of the National Academy of Sciences, vol.108, issue.33, pp.480-487, 2011.
DOI : 10.1073/pnas.1103367108

N. Zeytuni and R. Zarivach, MSR-1 magnetosome-associated proteins MamA, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.28, issue.7, pp.824-831, 2010.
DOI : 10.1107/S1744309110018300

N. Zeytuni and R. Zarivach, Purification of the M. magneticum strain AMB-1 magnetosome associated protein MamADelta41, J Vis Exp, pp.8-12, 2010.

F. Baud and S. Karlin, Measures of residue density in protein structures, Proceedings of the National Academy of Sciences, vol.96, issue.22, pp.12494-12503, 1999.
DOI : 10.1073/pnas.96.22.12494

L. Conte, . Lo, C. Chothia, J. Janin, L. Conte et al., The atomic structure of protein-protein recognition sites11Edited by A. R. Fersht, Journal of Molecular Biology, vol.285, issue.5, pp.2177-98, 1999.
DOI : 10.1006/jmbi.1998.2439

L. Goldschmidt, D. Cooper, Z. Derewenda, and D. Eisenberg, Toward rational protein crystallization: A Web server for the design of crystallizable protein variants, Protein Science, vol.103, issue.2, pp.1569-76, 2007.
DOI : 10.1110/ps.072914007

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, N. Ben-tal et al., Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Res, vol.38, 2010.

G. Celniker, G. Nimrod, H. Ashkenazy, F. Glaser, E. Martz et al., ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function, Israel Journal of Chemistry, vol.331, issue.3-4, pp.199-206, 2013.
DOI : 10.1002/ijch.201200096

F. Studier, Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, pp.207-241, 2005.
DOI : 10.1016/j.pep.2005.01.016

Z. Otwinowski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-333, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

F. Long, A. Vagin, P. Young, and G. Murshudov, : a molecular-replacement pipeline, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.1, pp.125-157, 2007.
DOI : 10.1107/S0907444907050172

URL : https://doi.org/10.1107/s0907444907050172

S. Cohen, B. Jelloul, M. Long, F. Vagin, A. Knipscheer et al., ARP/wARP and molecular replacement: The next generation, Acta Crystallographica Section D: Biological Crystallography, pp.49-60, 2007.

A. Vagin, R. Steiner, A. Lebedev, L. Potterton, S. Mcnicholas et al., 5 dictionary: organization of prior chemical knowledge and guidelines for its use, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2184-95, 2004.
DOI : 10.1107/S0907444904023510/ba5073sup1.txt

W. Delano, The PyMOL Molecular Graphics System, Schrödinger LLC www.pymolorg. Available, issue.1, 2002.

N. Guex and M. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling, Electrophoresis, vol.23, issue.15, pp.2714-2737, 1997.
DOI : 10.1002/elps.1150181505

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10037-10078, 2001.
DOI : 10.1073/pnas.181342398

T. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp Ser, vol.41, pp.95-103, 1999.

A. Waterhouse, J. Procter, D. Martin, M. Clamp, and G. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, issue.9, pp.1189-91, 2009.
DOI : 10.1093/bioinformatics/btp033

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2734, 2013.
DOI : 10.1093/molbev/mst197

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520