D. J. Field, A. Hayes, and R. F. Hess, Contour integration by the human visual system: Evidence for a local ???association field???, Vision Research, vol.33, issue.2, pp.173-193, 1993.
DOI : 10.1016/0042-6989(93)90156-Q

W. Geisler, J. Perry, B. Super, and D. Gallogly, Edge co-occurrence in natural images predicts contour grouping performance, Vision Research, vol.41, issue.6, pp.711-724, 2001.
DOI : 10.1016/S0042-6989(00)00277-7

J. J. Hunt, W. H. Bosking, and G. J. Goodhill, Statistical structure of lateral connections in the primary visual cortex, Neural Systems & Circuits, vol.1, issue.1, pp.3-10, 2011.
DOI : 10.1186/2042-1001-1-3

R. F. Hess, A. Hayes, and D. J. Field, Contour integration and cortical processing, Journal of Physiology-Paris, vol.97, issue.2-3, pp.105-119, 2003.
DOI : 10.1016/j.jphysparis.2003.09.013

W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, J. Neurosci, vol.17, pp.2112-2127, 1997.

L. C. Sincich and G. G. Blasdel, Oriented axon projections in primary visual cortex of the monkey, J. Neurosci, vol.21, pp.4416-4426, 2001.

S. Thorpe, D. Fize, and . Marlot, Speed of processing in the human visual system, Nature, vol.381, issue.6582, pp.520-522, 1038.
DOI : 10.1038/381520a0

T. Serre, A. Oliva, and T. Poggio, A feedforward architecture accounts for rapid categorization, Proceedings of the National Academy of Sciences, vol.104, issue.15, pp.6424-6429, 2007.
DOI : 10.1073/pnas.0700622104

J. Drewes, J. Trommershauser, and K. R. Gegenfurtner, Parallel visual search and rapid animal detection in natural scenes, Journal of Vision, vol.11, issue.2, 2011.
DOI : 10.1167/11.2.20

URL : https://hal.archives-ouvertes.fr/hal-00580437

S. M. Crouzet and T. Serre, What are the visual features underlying rapid object recognition? Front, Psycho, vol.2, p.326, 2011.

A. Felix, D. I. Wichmann, &. Braun, R. Karl, and . Gegenfurtner, Phase noise and the classification of natural images, Vision Res, vol.46, pp.1520-1529, 2006.

H. Kirchner and S. J. Thorpe, Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited, Vision Research, vol.46, issue.11, pp.1762-1776, 2006.
DOI : 10.1016/j.visres.2005.10.002

URL : https://hal.archives-ouvertes.fr/hal-00111074

J. N. Mcmanus, W. Li, and C. D. Gilbert, Adaptive shape processing in primary visual cortex, Proceedings of the National Academy of Sciences, vol.108, issue.24, pp.9739-9746, 2011.
DOI : 10.1073/pnas.1105855108

J. A. Bednar, Building a mechanistic model of the development and function of the primary visual cortex, Journal of Physiology-Paris, vol.106, issue.5-6, pp.194-211, 2012.
DOI : 10.1016/j.jphysparis.2011.12.001

G. E. Rice, D. M. Watson, T. Hartley, and T. J. Andrews, Low-Level Image Properties of Visual Objects Predict Patterns of Neural Response across Category-Selective Regions of the Ventral Visual Pathway, Journal of Neuroscience, vol.34, issue.26, pp.8837-8844, 2014.
DOI : 10.1523/JNEUROSCI.5265-13.2014

M. M. Michel, Y. Chen, W. S. Geisler, and E. Seidemann, An illusion predicted by V1 population activity implicates cortical topography in shape perception, Nature Neuroscience, vol.17, issue.10, pp.1477-1483, 2013.
DOI : 10.1017/S0952523899164046

S. Fischer, R. Redondo, L. U. Perrinet, and G. Cristobal, Sparse Approximation of Images Inspired from the Functional Architecture of the Primary Visual Areas, EURASIP Journal on Advances in Signal Processing, vol.2007, issue.1, pp.90727-122, 2007.
DOI : 10.1023/A:1026553619983

L. U. Perrinet, M. Samuelides, and S. J. Thorpe, Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit, Neurocomputing, vol.57, pp.125-134, 2004.
DOI : 10.1016/j.neucom.2004.01.010

F. Pedregosa, Scikit-learn: Machine learning in Python, J. M. L. R, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. H. Cha and S. N. Srihari, On measuring the distance between histograms. Pattern Recogn, pp.1355-1370, 2002.