M. Himmel, S. Ding, D. Johnson, W. Adney, M. Nimlos et al., Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science, vol.315, issue.5813, pp.804-811, 2007.
DOI : 10.1126/science.1137016

G. Vaaje-kolstad, B. Westereng, S. Horn, Z. Liu, H. Zhai et al., An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides, Science, vol.330, issue.6001, pp.219-241, 2010.
DOI : 10.1126/science.1192231

P. Harris, D. Welner, K. Mcfarland, E. Re, N. Poulsen et al., Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family, Biochemistry, vol.49, issue.15, pp.3305-3321, 2010.
DOI : 10.1021/bi100009p

B. Westereng, T. Ishida, G. Vaaje-kolstad, M. Wu, V. Eijsink et al., The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose, PLoS ONE, vol.6, issue.11, p.27807, 2011.
DOI : 10.1371/journal.pone.0027807.g008

J. Langston, T. Shaghasi, E. Abbate, F. Xu, E. Vlasenko et al., Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61, Applied and Environmental Microbiology, vol.77, issue.19, pp.7007-7022, 2011.
DOI : 10.1128/AEM.05815-11

R. Quinlan, M. Sweeney, L. Leggio, L. Otten, H. Poulsen et al., Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proceedings of the National Academy of Sciences, vol.108, issue.37, pp.15079-84, 2011.
DOI : 10.1073/pnas.1105776108

W. Beeson, C. Phillips, J. Cate, and M. Marletta, Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases, Journal of the American Chemical Society, vol.134, issue.2, pp.890-892, 2012.
DOI : 10.1021/ja210657t

J. Agger, T. Isaksen, A. Várnai, S. Vidal-melgosa, W. Willats et al., Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation, Proceedings of the National Academy of Sciences, vol.111, issue.17, pp.6287-92, 2014.
DOI : 10.1073/pnas.1323629111

V. Vu, W. Beeson, E. Span, E. Farquhar, and M. Marletta, A family of starch-active polysaccharide monooxygenases, Proceedings of the National Academy of Sciences, vol.111, issue.38, pp.13822-13829, 2014.
DOI : 10.1073/pnas.1408090111

L. Leggio, L. Simmons, T. Poulsen, J. Frandsen, K. Hemsworth et al., Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase, Nature Communications, vol.300, p.5961, 2015.
DOI : 10.1038/ncomms6961

URL : https://hal.archives-ouvertes.fr/hal-01439010

V. Vu, V. Beeson, W. Phillips, C. Cate, J. Marletta et al., Determinants of Regioselective Hydroxylation in the Fungal Polysaccharide Monooxygenases, Journal of the American Chemical Society, vol.136, issue.2, pp.562-567, 2014.
DOI : 10.1021/ja409384b

I. Morgenstern, J. Powlowski, and A. Tsang, Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family, Briefings in Functional Genomics, vol.13, issue.6, pp.471-81, 2014.
DOI : 10.1093/bfgp/elu032

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.1-6, 2014.
DOI : 10.1093/nar/gkt1178

A. Levasseur, E. Drula, V. Lombard, P. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, p.41, 2013.
DOI : 10.1186/1471-2148-12-186

URL : https://hal.archives-ouvertes.fr/hal-01268121

Z. Forsberg, G. Vaaje-kolstad, B. Westereng, A. Bunaes, Y. Stenstrøm et al., Cleavage of cellulose by a CBM33 protein, Protein Science, vol.22, issue.9, pp.1479-83, 2011.
DOI : 10.1002/pro.689

G. Hemsworth, E. Taylor, R. Kim, R. Gregory, S. Lewis et al., The Copper Active Site of CBM33 Polysaccharide Oxygenases, Journal of the American Chemical Society, vol.135, issue.16, pp.6069-77, 2013.
DOI : 10.1021/ja402106e

C. Sygmund, D. Kracher, S. Scheiblbrandner, K. Zahma, A. Felice et al., Characterization of the Two Neurospora crassa Cellobiose Dehydrogenases and Their Connection to Oxidative Cellulose Degradation, Applied and Environmental Microbiology, vol.78, issue.17
DOI : 10.1128/AEM.01503-12

M. Zamocky, R. Ludwig, C. Peterbauer, B. Hallberg, C. Divne et al., Cellobiose Dehydrogenase ??? A Flavocytochrome from Wood-Degrading, Phytopathogenic and Saprotropic Fungi, Current Protein & Peptide Science, vol.7, issue.3, pp.255-80, 2006.
DOI : 10.2174/138920306777452367

E. Espagne, O. Lespinet, F. Malagnac, D. Silva, C. Jaillon et al., The genome sequence of the model ascomycete fungus Podospora anserina, Genome Biology, vol.9, issue.5, p.77, 2008.
DOI : 10.1186/gb-2008-9-5-r77

URL : https://hal.archives-ouvertes.fr/hal-00286300

M. Couturier, D. Navarro, C. Olivé, D. Chevret, M. Haon et al., Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis, BMC Genomics, vol.13, issue.1, p.57, 2012.
DOI : 10.1351/pac198759020257

URL : https://hal.archives-ouvertes.fr/hal-01001052

A. Ray, S. Saykhedkar, P. Ayoubi-canaan, S. Hartson, R. Prade et al., Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum, Applied Microbiology and Biotechnology, vol.1218, issue.5, pp.2075-89, 2012.
DOI : 10.1007/s00253-012-3907-5

E. Fernandez-fueyo, F. Ruiz-dueñas, P. Ferreira, D. Floudas, D. Hibbett et al., Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.5458-63, 2012.
DOI : 10.1073/pnas.1119912109

O. Connell, R. Thon, M. Hacquard, S. Amyotte, S. Kleemann et al., Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses, Nature Genetics, vol.2, issue.9, pp.1060-1065, 2012.
DOI : 10.1007/s00438-010-0572-1

URL : https://hal.archives-ouvertes.fr/hal-01191183

L. Poidevin, J. Berrin, C. Bennati-granier, A. Levasseur, I. Herpoël-gimbert et al., Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes, Applied Microbiology and Biotechnology, vol.16, issue.17, pp.7457-69, 2014.
DOI : 10.1007/s00253-014-5698-3

URL : https://hal.archives-ouvertes.fr/hal-01070025

D. Navarro, M. Rosso, M. Haon, C. Olivé, E. Bonnin et al., Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalisinvolves successive secretion of oxidative and hydrolytic enzymes, Biotechnology for Biofuels, vol.10, issue.1, p.143, 2014.
DOI : 10.1186/s13068-014-0143-5

A. Turbe-doan, Y. Arfi, E. Record, I. Estrada-alvarado, and A. Levasseur, Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw, Applied Microbiology and Biotechnology, vol.7, issue.11, pp.4873-85, 2013.
DOI : 10.1007/s00253-012-4355-y

M. Couturier, J. Feliu, M. Haon, D. Navarro, L. Lesage-meessen et al., A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity, Microbial Cell Factories, vol.10, issue.1, p.103, 2011.
DOI : 10.1186/1475-2859-10-103

T. Isaksen, B. Westereng, F. Aachmann, J. Agger, D. Kracher et al., A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides, Journal of Biological Chemistry, vol.289, issue.5, pp.2632-2674, 2014.
DOI : 10.1074/jbc.M113.530196

R. Kittl, D. Kracher, D. Burgstaller, D. Haltrich, and R. Ludwig, Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay, Biotechnology for Biofuels, vol.5, issue.1, p.79, 2012.
DOI : 10.1021/ac034155b

B. Westereng, J. Agger, S. Horn, G. Vaaje-kolstad, F. Aachmann et al., Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases, Journal of Chromatography A, vol.1271, issue.1, pp.144-52, 2013.
DOI : 10.1016/j.chroma.2012.11.048

M. Saloheimo, T. Nakari-setala, M. Tenkanen, and M. Penttila, cDNA Cloning of a Trichoderma reesei Cellulase and Demonstration of Endoglucanase Activity by Expression in Yeast, European Journal of Biochemistry, vol.12, issue.2, pp.584-91, 1997.
DOI : 10.1016/0378-1119(87)90472-0

Z. Forsberg, A. Mackenzie, M. Sørlie, Å. Røhr, R. Helland et al., Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases, Proceedings of the National Academy of Sciences, vol.111, issue.23, pp.8446-51, 2014.
DOI : 10.1073/pnas.1402771111

G. Hemsworth, G. Davies, and P. Walton, Recent insights into copper-containing lytic polysaccharide mono-oxygenases, Current Opinion in Structural Biology, vol.23, issue.5, pp.660-668, 2013.
DOI : 10.1016/j.sbi.2013.05.006

T. Pham, J. Berrin, E. Record, K. To, and J. Sigoillot, Hydrolysis of softwood by Aspergillus mannanase: Role of a carbohydrate-binding module, Journal of Biotechnology, vol.148, issue.4, pp.163-70, 2010.
DOI : 10.1016/j.jbiotec.2010.05.012

H. Ravalason, I. Herpoël-gimbert, E. Record, F. Bertaud, S. Grisel et al., Fusion of a family 1 carbohydrate binding module of Aspergillus niger to the Pycnoporus cinnabarinus laccase for efficient softwood kraft pulp biobleaching, Journal of Biotechnology, vol.142, issue.3-4, pp.220-226, 2009.
DOI : 10.1016/j.jbiotec.2009.04.013

D. Bolam, A. Ciruela, S. Mcqueen-mason, P. Simpson, M. Williamson et al., Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity, Biochemical Journal, vol.331, issue.3, pp.775-81, 1998.
DOI : 10.1042/bj3310775

P. Tomme, H. Van-tilbeurgh, G. Pettersson, J. Van-damme, J. Vandekerckhove et al., Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis, European Journal of Biochemistry, vol.8, issue.3, pp.575-81, 1988.
DOI : 10.1016/0141-0229(87)90045-7

T. Reinikainen, O. Teleman, and T. Teeri, Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I fromTrichoderma reesei, Proteins: Structure, Function, and Genetics, vol.34, issue.4, pp.392-403, 1995.
DOI : 10.1002/prot.340220409

Y. Arfi, M. Shamshoum, I. Rogachev, Y. Peleg, and E. Bayer, Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation, Proceedings of the National Academy of Sciences, vol.111, issue.25, pp.9109-9123, 2014.
DOI : 10.1073/pnas.1404148111

P. Busk and L. Lange, Function-Based Classification of Carbohydrate-Active Enzymes by Recognition of Short, Conserved Peptide Motifs, Applied and Environmental Microbiology, vol.79, issue.11, pp.3380-91, 2013.
DOI : 10.1128/AEM.03803-12

X. Li, I. Beeson, . Wt, C. Phillips, M. Marletta et al., Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases, Structure, vol.20, issue.6, pp.1051-61, 2012.
DOI : 10.1016/j.str.2012.04.002

URL : http://doi.org/10.1016/j.str.2012.04.002

M. Couturier, M. Haon, P. Coutinho, B. Henrissat, L. Lesage-meessen et al., Podospora anserina Hemicellulases Potentiate the Trichoderma reesei Secretome for Saccharification of Lignocellulosic Biomass, Applied and Environmental Microbiology, vol.77, issue.1, pp.237-283, 2011.
DOI : 10.1128/AEM.01761-10

M. Bey, J. Berrin, L. Poidevin, and J. Sigoillot, Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes, Microbial Cell Factories, vol.10, issue.1, p.113, 2011.
DOI : 10.1186/1475-2859-9-58

T. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods Enzym, vol.160, pp.19-25, 1988.
DOI : 10.1016/0076-6879(88)60103-0

D. Ropartz, P. Bodet, C. Przybylski, F. Gonnet, R. Daniel et al., Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes, Rapid Communications in Mass Spectrometry, vol.19, issue.14, pp.2059-70, 2011.
DOI : 10.1002/rcm.5060

S. Fry, W. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiologia Plantarum, vol.89, issue.1, pp.1-3, 1993.
DOI : 10.1111/j.1399-3054.1993.tb01778.x