M. Fraenkel, M. Ketzinel-gilad, Y. Ariav, O. Pappo, M. Karaca et al., mTOR Inhibition by Rapamycin Prevents ??-Cell Adaptation to Hyperglycemia and Exacerbates the Metabolic State in Type 2 Diabetes, Diabetes, vol.57, issue.4, pp.945-57, 2008.
DOI : 10.2337/db07-0922

S. Um, D. 'alessio, D. Thomas, and G. , Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1, Cell Metabolism, vol.3, issue.6, pp.393-402, 2006.
DOI : 10.1016/j.cmet.2006.05.003

URL : http://doi.org/10.1016/j.cmet.2006.05.003

G. Reaven and . Banting-lecture, Role of insulin resistance in human disease, Diabetes, vol.3712, issue.12, pp.1595-60701, 1988.

C. Andreassen, J. Jakobsen, A. Flyvbjerg, and H. Andersen, Expression of neurotrophic factors in diabetic muscle--relation to neuropathy and muscle strength, Brain, vol.132, issue.10, pp.2724-2757, 2009.
DOI : 10.1093/brain/awp208

R. Rabol, R. Boushel, and D. F. , Mitochondrial oxidative function and type 2 diabetes, Applied Physiology, Nutrition, and Metabolism, vol.31, issue.6, pp.675-83, 2006.
DOI : 10.1139/h06-071

B. Lowell and G. Shulman, Mitochondrial Dysfunction and Type 2 Diabetes, Science, vol.307, issue.5708, pp.384-391, 2005.
DOI : 10.1126/science.1104343

K. Petersen, D. Befroy, S. Dufour, J. Dziura, C. Ariyan et al., Mitochondrial Dysfunction in the Elderly: Possible Role in Insulin Resistance, Science, vol.300, issue.5622, pp.1140-1142, 2003.
DOI : 10.1126/science.1082889

K. Petersen, S. Dufour, D. Befroy, R. Garcia, and G. Shulman, Impaired mitochondrial activity in the insulinresistant offspring of patients with type 2 diabetes, N Engl J Med. Epub, vol.3507, issue.7, pp.664-71664, 2004.

L. Groop, R. Bonadonna, D. Simonson, A. Petrides, M. Shank et al., Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity, Am J Physiol, vol.263, issue.1, pp.79-84, 1992.

M. Roden, T. Price, G. Perseghin, K. Petersen, D. Rothman et al., Mechanism of free fatty acid-induced insulin resistance in humans., Journal of Clinical Investigation, vol.97, issue.12, pp.2859-65, 1996.
DOI : 10.1172/JCI118742

D. Pan, S. Lillioja, A. Kriketos, M. Milner, L. Baur et al., Skeletal Muscle Triglyceride Levels Are Inversely Related to Insulin Action, Diabetes, vol.46, issue.6, pp.983-801, 1997.
DOI : 10.2337/diab.46.6.983

D. Phillips, S. Caddy, V. Ilic, B. Fielding, K. Frayn et al., Intramuscular triglyceride and muscle insulin sensitivity: Evidence for a relationship in nondiabetic subjects, Metabolism, vol.45, issue.8, pp.947-50, 1996.
DOI : 10.1016/S0026-0495(96)90260-7

M. Krssak, F. Petersen, K. Dresner, A. Dipietro, L. Vogel et al., Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study, Diabetologia, vol.42, issue.1, pp.113-119, 1999.
DOI : 10.1007/s001250051123

J. He, S. Watkins, and D. Kelley, Skeletal Muscle Lipid Content and Oxidative Enzyme Activity in Relation to Muscle Fiber Type in Type 2 Diabetes and Obesity, Diabetes, vol.50, issue.4, pp.817-2306, 2001.
DOI : 10.2337/diabetes.50.4.817

D. Kelley, J. He, E. Menshikova, and V. Ritov, Dysfunction of Mitochondria in Human Skeletal Muscle in Type 2 Diabetes, Diabetes, vol.51, issue.10, pp.2944-50, 2002.
DOI : 10.2337/diabetes.51.10.2944

V. Ritov, E. Menshikova, J. He, R. Ferrell, B. Goodpaster et al., Deficiency of Subsarcolemmal Mitochondria in Obesity and Type 2 Diabetes, Diabetes, vol.54, issue.1, pp.8-14, 2004.
DOI : 10.2337/diabetes.54.1.8

V. Mootha, C. Lindgren, K. Eriksson, A. Subramanian, S. Sihag et al., PGC-1alpha-respon- sive genes involved in oxidative phosphorylation are coordinately

M. Patti, A. Butte, S. Crunkhorn, K. Cusi, R. Berria et al., Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8466-71, 2003.
DOI : 10.1073/pnas.1032913100

V. Schrauwen-hinderling, M. Kooi, M. Hesselink, J. Jeneson, W. Backes et al., Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects, Diabetologia, vol.30, issue.1, pp.113-133, 2006.
DOI : 10.1007/s00125-006-0475-1

D. Befroy, K. Petersen, S. Dufour, G. Mason, R. De-graaf et al., Impaired Mitochondrial Substrate Oxidation in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Patients, Diabetes, vol.56, issue.5, pp.1376-81, 2007.
DOI : 10.2337/db06-0783

C. Bonnard, A. Durand, S. Peyrol, E. Chanseaume, M. Chauvin et al., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice, Journal of Clinical Investigation, vol.118, issue.2, pp.789-800, 2008.
DOI : 10.1172/JCI32601

URL : https://hal.archives-ouvertes.fr/inserm-00808486

D. Han, C. Hancock, S. Jung, K. Higashida, S. Kim et al., Deficiency of the Mitochondrial Electron Transport Chain in Muscle Does Not Cause Insulin Resistance, PLoS ONE, vol.30, issue.5, pp.19739-3093385, 2011.
DOI : 10.1371/journal.pone.0019739.t001

C. Hancock, D. Han, M. Chen, S. Terada, T. Yasuda et al., High-fat diets cause insulin resistance despite an increase in muscle mitochondria, Proceedings of the National Academy of Sciences, vol.105, issue.22, pp.7815-7835, 2008.
DOI : 10.1073/pnas.0802057105

J. Holloszy, Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance, American Journal of Clinical Nutrition, vol.89, issue.1, pp.463-469, 2008.
DOI : 10.3945/ajcn.2008.26717C

J. Holloszy, "Deficiency" of Mitochondria in Muscle Does Not Cause Insulin Resistance, Diabetes, vol.62, issue.4, pp.1036-1076, 2013.
DOI : 10.2337/db12-1107

G. Holloway, A. Bonen, and L. Spriet, Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals, American Journal of Clinical Nutrition, vol.89, issue.1, pp.455-62, 2008.
DOI : 10.3945/ajcn.2008.26717B

G. Holloway, B. Gurd, L. Snook, J. Lally, and A. Bonen, Compensatory Increases in Nuclear PGC1?? Protein Are Primarily Associated With Subsarcolemmal Mitochondrial Adaptations in ZDF Rats, Diabetes, vol.59, issue.4, pp.819-847, 2010.
DOI : 10.2337/db09-1519

M. Desrois, R. Sidell, D. Gauguier, L. King, G. Radda et al., Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart, Cardiovascular Research, vol.61, issue.2, pp.288-96, 2004.
DOI : 10.1016/j.cardiores.2003.11.021

B. Portha, P. Serradas, D. Bailbe, K. Suzuki, Y. Goto et al., Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes, Diabetes, vol.40, issue.4, pp.486-91, 1991.
DOI : 10.2337/diabetes.40.4.486

M. Desrois, K. Clarke, C. Lan, C. Dalmasso, M. Cole et al., Upregulation of eNOS and unchanged energy metabolism in increased susceptibility of the aging type 2 diabetic GK rat heart to ischemic injury, AJP: Heart and Circulatory Physiology, vol.299, issue.5, pp.1679-86, 2010.
DOI : 10.1152/ajpheart.00998.2009

URL : https://hal.archives-ouvertes.fr/hal-00617801

Y. Goto, M. Kakizaki, and N. Masaki, Production of Spontaneous Diabetic Rats by Repetition of Selective Breeding, The Tohoku Journal of Experimental Medicine, vol.119, issue.1, pp.85-90, 1976.
DOI : 10.1620/tjem.119.85

Y. Goto, K. Suzuki, T. Ono, M. Sasaki, and T. Toyota, Development of Diabetes in the Non-Obese NIDDM Rat (GK Rat), Adv Exp Med Biol. Epub, vol.246, pp.29-31, 1988.
DOI : 10.1007/978-1-4684-5616-5_4

B. Portha, Programmed disorders of ??-cell development and function as one cause for type 2 diabetes? The GK rat paradigm, Diabetes/Metabolism Research and Reviews, vol.51, issue.6, pp.495-504, 2005.
DOI : 10.1002/dmrr.566

B. Giannesini, M. Izquierdo, L. Fur, Y. Cozzone, P. Fingerle et al., New experimental setup for studying strictly noninvasively skeletal muscle function in rat using1H-magnetic resonance (MR) imaging and31P-MR spectroscopy, Magnetic Resonance in Medicine, vol.9, issue.5, pp.1058-64, 2005.
DOI : 10.1002/mrm.20637

J. Mattei, Y. Fur, N. Cuge, S. Guis, P. Cozzone et al., Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.5, issue.5, pp.275-284, 2006.
DOI : 10.1007/s10334-006-0051-1

URL : https://hal.archives-ouvertes.fr/hal-00168923

L. Vanhamme, A. Van-den-boogaart, and S. Van-huffel, Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge, Journal of Magnetic Resonance, vol.129, issue.1, pp.35-43, 1997.
DOI : 10.1006/jmre.1997.1244

D. Arnold, P. Matthews, and G. Radda, metabolic recovery after exercise and the assessment of mitochondrial functionin Vivo in human skeletal muscle by means of31P NMR, Magnetic Resonance in Medicine, vol.22, issue.3, pp.307-322, 1984.
DOI : 10.1002/mrm.1910010303

G. Kemp and G. Radda, Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review, Magn Reson Q. Epub, vol.10, issue.1, pp.43-63, 1994.

B. Giannesini, M. Izquierdo, L. Fur, Y. Cozzone, P. Bendahan et al., reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle, The Journal of Physiology, vol.971, issue.3, pp.905-920, 2001.
DOI : 10.1111/j.1469-7793.2001.00905.x

C. Thompson, G. Kemp, A. Sanderson, and G. Radda, Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis, J Appl Physiol, vol.78, issue.6, pp.2131-2140, 1995.

K. Roth and M. Weiner, Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy, Magn Reson Med. Epub, vol.2212, issue.2, pp.505-1101, 1991.

P. Hochachka and T. Mommsen, Protons and anaerobiosis, Science, vol.219, issue.4591, pp.1391-1398, 1983.
DOI : 10.1126/science.6298937

C. Wolfe, H. Gilbert, K. Brindle, and G. Radda, Determination of buffering capacity of rat myocardium during ischemia, Biochim Biophys Acta, vol.971, issue.1, pp.9-20, 1988.

G. Adams, J. Foley, and R. Meyer, Muscle buffer capacity estimated from pH changes during rest-towork transitions, J Appl Physiol, vol.69, issue.3, pp.968-72, 1990.

X. Wang, D. Dubois, Y. Cao, W. Jusko, and R. Almon, Diabetes disease progression in Goto-Kakizaki rats: effects of salsalate treatment, Diabetes Metab Syndr Obes, vol.7, pp.381-390, 2014.

S. Bisbis, D. Bailbe, M. Tormo, F. Picarel-blanchot, M. Derouet et al., Insulin resistance in the GK rat: decreased receptor number but normal kinase activity in liver, Am J Physiol, vol.265, issue.51101, pp.807-820, 1993.

R. Farese, M. Standaert, K. Yamada, L. Huang, C. Zhang et al., Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats., Proceedings of the National Academy of Sciences, vol.91, issue.23, pp.11040-11044, 1994.
DOI : 10.1073/pnas.91.23.11040

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ???phosphocreatine circuit??? for cellular energy homeostasis, Biochemical Journal, vol.281, issue.1, pp.21-40, 1992.
DOI : 10.1042/bj2810021

J. Prompers, B. Wessels, G. Kemp, and K. Nicolay, MITOCHONDRIA: Investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy, The International Journal of Biochemistry & Cell Biology, vol.50, issue.14, pp.67-72014, 2014.
DOI : 10.1016/j.biocel.2014.02.014

W. Jorgensen, P. Jelnes, K. Rud, L. Hansen, N. Grunnet et al., Progression of type 2 diabetes in GK rats affects muscle and liver mitochondria differently: pronounced reduction of complex II flux is observed in liver only, American Journal of Physiology - Endocrinology And Metabolism, vol.303, issue.4, pp.515-538, 2012.
DOI : 10.1152/ajpendo.00103.2012

R. Boutilier, Mechanisms of cell survival in hypoxia and hypothermia, J Exp Biol, vol.20410, pp.3171-8103, 2001.

D. Padilla, P. Mcdonough, B. Behnke, Y. Kano, K. Hageman et al., Effects of Type II diabetes on capillary hemodynamics in skeletal muscle, AJP: Heart and Circulatory Physiology, vol.291, issue.5, 2006.
DOI : 10.1152/ajpheart.00290.2006

P. Hochachka and G. Mcclelland, Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles, J Exp Biol, vol.200, issue.2, pp.381-387, 1997.

I. Lanza, S. Bhagra, K. Nair, and J. Port, Measurement of human skeletal muscle oxidative capacity by 31P-MR spectroscopy: A cross-validation with in vitro measurements, Journal of Magnetic Resonance Imaging, vol.32, issue.Pt 1, pp.1143-50, 2011.
DOI : 10.1002/jmri.22733

K. Petersen, S. Dufour, and G. Shulman, Decreased Insulin-Stimulated ATP Synthesis and Phosphate Transport in Muscle of Insulin-Resistant Offspring of Type 2 Diabetic Parents, PLoS Medicine, vol.100, issue.9, pp.233-1184227, 2005.
DOI : 10.1371/journal.pmed.0020233.t002

L. Hinder, A. Vivekanandan-giri, L. Mclean, S. Pennathur, and E. Feldman, Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes, Journal of Endocrinology, vol.216, issue.1, pp.1-11, 2013.
DOI : 10.1530/JOE-12-0356

B. Giannesini, P. Cozzone, and D. Bendahan, Non-invasive investigations of muscular fatigue: metabolic and electromyographic components, Biochimie, vol.85, issue.9, pp.873-83, 2003.
DOI : 10.1016/S0300-9084(03)00124-X

A. Sleigh, P. Raymond-barker, K. Thackray, D. Porter, M. Hatunic et al., Mitochondrial dysfunction in patients with primary congenital insulin resistance, Journal of Clinical Investigation, vol.121, issue.6, pp.2457-61, 2011.
DOI : 10.1172/JCI46405DS1

Y. Murakawa, W. Zhang, C. Pierson, T. Brismar, C. Ostenson et al., Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy, Diabetes/Metabolism Research and Reviews, vol.124, issue.Suppl. 2, pp.473-83, 2002.
DOI : 10.1002/dmrr.326

M. Allen, I. Choi, K. Kimpinski, T. Doherty, and C. Rice, Motor unit loss and weakness in association with diabetic neuropathy in humans, Muscle & Nerve, vol.55, issue.Suppl 1, pp.298-300, 2013.
DOI : 10.1002/mus.23792

H. Andersen, P. Gadeberg, B. Brock, and J. Jakobsen, Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study, Diabetologia, vol.40, issue.9, pp.1062-1071, 1997.
DOI : 10.1007/s001250050788

R. Greenman, L. Khaodhiar, C. Lima, T. Dinh, J. Giurini et al., Foot Small Muscle Atrophy Is Present Before the Detection of Clinical Neuropathy, Diabetes Care, vol.28, issue.6, pp.1425-301425, 2005.
DOI : 10.2337/diacare.28.6.1425

J. Huang, J. Wang, L. Gu, J. Bao, J. Yin et al., Effect of a Low-Protein Diet Supplemented with Ketoacids on Skeletal Muscle Atrophy and Autophagy in Rats with Type 2 Diabetic Nephropathy, PLoS ONE, vol.103, issue.11, p.3841136, 2013.
DOI : 10.1371/journal.pone.0081464.g008