R. Karagozian, Z. Derdak, and G. Baffy, Obesity-associated mechanisms of hepatocarcinogenesis, Metabolism, vol.63, issue.5, pp.607-624, 2014.
DOI : 10.1016/j.metabol.2014.01.011

S. Yazawa, N. Suetome, K. Okamoto, and T. Namiki, Content of capsaicinoids and capsaicinoid-like substances in fruit of pepper (Capsicum annuum L.) hybrids made with 'CH-19 sweet' as a parent, J Jpn Soc Hortic Sci, issue.3, pp.58601-58608, 1989.

S. Snitker, Y. Fujishima, H. Shen, S. Ott, X. Pi-sunyer et al., Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications, American Journal of Clinical Nutrition, vol.89, issue.1, pp.45-50, 2008.
DOI : 10.3945/ajcn.2008.26561

B. Faraut, B. Giannesini, V. Matarazzo, L. Fur, Y. Rougon et al., Capsiate administration results in an uncoupling protein-3 downregulation, an enhanced muscle oxidative capacity and a decreased abdominal fat content in vivo, International Journal of Obesity, vol.43, issue.12, pp.1348-55182, 2009.
DOI : 10.1038/ijo.2009.182

S. Haramizu, F. Kawabata, Y. Masuda, K. Ohnuki, T. Watanabe et al., Capsinoids, Non-Pungent Capsaicin Analogs, Reduce Body Fat Accumulation without Weight Rebound unlike Dietary Restriction in Mice, Bioscience, Biotechnology, and Biochemistry, vol.116, issue.7, pp.95-104, 2011.
DOI : 10.1271/bbb.60341

E. Watanabe, T. Kodama, T. Masuyama, S. Tsubuku, A. Otabe et al., Studies of the Toxicological Potential of Capsinoids: VIII. A 13-Week Toxicity Study of Commercial-Grade Dihydrocapsiate in Rats, International Journal of Toxicology, vol.27, pp.101-119, 2008.
DOI : 10.1080/10915810802513619

T. Kodama, T. Masuyama, T. Kayahara, S. Tsubuku, T. Ohishi et al., Studies of the Toxicological Potential of Capsinoids XIV: A 26-week Gavage Toxicity Study of Dihydrocapsiate in Rats, International Journal of Toxicology, vol.29, issue.1, pp.27-54, 2010.
DOI : 10.1177/1091581809358925

K. Ohnuki, S. Haramizu, K. Oki, T. Watanabe, S. Yazawa et al., Administration of Capsiate, a Non-Pungent Capsaicin Analog, Promotes Energy Metabolism and Suppresses Body Fat Accumulation in Mice, Bioscience, Biotechnology, and Biochemistry, vol.17, issue.11, pp.2735-2775, 2001.
DOI : 10.1016/S0306-4522(97)00523-X

Y. Masuda, S. Haramizu, K. Oki, K. Ohnuki, T. Watanabe et al., Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog, Journal of Applied Physiology, vol.95, issue.6, pp.2408-2423, 2003.
DOI : 10.1152/japplphysiol.00828.2002

K. Ono, M. Tsukamoto-yasui, Y. Hara-kimura, N. Inoue, Y. Nogusa et al., Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses, Journal of Applied Physiology, vol.110, issue.3, pp.789-98, 2010.
DOI : 10.1152/japplphysiol.00128.2010

T. Iida, T. Moriyama, K. Kobata, A. Morita, N. Murayama et al., TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate, Neuropharmacology, vol.44, issue.7, pp.958-67, 2003.
DOI : 10.1016/S0028-3908(03)00100-X

N. Inoue, Y. Matsunaga, H. Satoh, and M. Takahashi, Enhanced Energy Expenditure and Fat Oxidation in Humans with High BMI Scores by the Ingestion of Novel and Non-Pungent Capsaicin Analogues (Capsinoids), Bioscience, Biotechnology, and Biochemistry, vol.273, issue.6, pp.380-389, 2007.
DOI : 10.1038/nm788

M. Jensen, Fate of fatty acids at rest and during exercise: regulatory mechanisms, Acta Physiologica Scandinavica, vol.57, issue.4, pp.385-90, 2003.
DOI : 10.1046/j.1365-201X.2003.01167.x

V. Azzu, S. Mookerjee, and M. Brand, Rapid turnover of mitochondrial uncoupling protein 3, Biochemical Journal, vol.32, issue.1, pp.13-20, 2009.
DOI : 10.1038/227680a0

S. Haramizu, W. Mizunoya, Y. Masuda, K. Ohnuki, T. Watanabe et al., Capsiate, a Nonpungent Capsaicin Analog, Increases Endurance Swimming Capacity of Mice by Stimulation of Vanilloid Receptors, Bioscience, Biotechnology, and Biochemistry, vol.70, issue.4, pp.774-81, 2006.
DOI : 10.1271/bbb.70.774

K. Kobata, M. Kawaguchi, and T. Watanabe, Enzymatic Synthesis of a Capsinoid by the Acylation of Vanillyl Alcohol with Fatty Acid Derivatives Catalyzed by Lipases, Bioscience, Biotechnology, and Biochemistry, vol.53, issue.5, pp.319-346, 2002.
DOI : 10.1016/0040-4020(96)00414-0

B. Giannesini, C. Vilmen, L. Fur, Y. Dalmasso, C. Cozzone et al., A strictly noninvasive MR setup dedicated to longitudinal studies of mechanical performance, bioenergetics, anatomy, and muscle recruitment in contracting mouse skeletal muscle, Magnetic Resonance in Medicine, vol.548, issue.1, pp.262-70, 2010.
DOI : 10.1002/mrm.22386

URL : https://hal.archives-ouvertes.fr/hal-00617756

J. Mattei, Y. Fur, N. Cuge, S. Guis, P. Cozzone et al., Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.5, issue.5, pp.275-284, 2006.
DOI : 10.1007/s10334-006-0051-1

URL : https://hal.archives-ouvertes.fr/hal-00168923

L. Fur, Y. Nicoli, F. Guye, M. Confort-gouny, S. Cozzone et al., Grid-free interactive and automated data processing for MR chemical shift imaging data, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.97, issue.1, pp.23-30, 2010.
DOI : 10.1007/s10334-009-0186-y

URL : https://hal.archives-ouvertes.fr/hal-00617766

L. Vanhamme, A. Van-den-boogaart, and S. Van-huffel, Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge, Journal of Magnetic Resonance, vol.129, issue.1, pp.35-43, 1997.
DOI : 10.1006/jmre.1997.1244

D. Arnold, P. Matthews, and G. Radda, metabolic recovery after exercise and the assessment of mitochondrial functionin Vivo in human skeletal muscle by means of31P NMR, Magnetic Resonance in Medicine, vol.22, issue.3, pp.307-322, 1984.
DOI : 10.1002/mrm.1910010303

B. Giannesini, M. Izquierdo, L. Fur, Y. Cozzone, P. Bendahan et al., reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle, The Journal of Physiology, vol.971, issue.3, pp.905-920, 2001.
DOI : 10.1111/j.1469-7793.2001.00905.x

G. Kemp and G. Radda, Quantitative interpretation of bioenergetic data from 31 P and 1 H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review, Magn Reson Q, vol.10, issue.1, pp.43-63, 1994.

L. Gyulai, Z. Roth, J. Leigh, . Jr, and B. Chance, Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR, J Biol Chem. Epub, vol.26010, issue.7, pp.3947-54, 1985.

K. Roth and M. Weiner, Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with31P NMR spectroscopy, Magnetic Resonance in Medicine, vol.3, issue.2, pp.505-516, 1991.
DOI : 10.1002/mrm.1910220258

P. Hochachka and T. Mommsen, Protons and anaerobiosis, Science, vol.219, issue.4591, pp.1391-1398, 1983.
DOI : 10.1126/science.6298937

C. Wolfe, H. Gilbert, K. Brindle, and G. Radda, Determination of buffering capacity of rat myocardium during ischemia, Biochim Biophys Acta, vol.971, issue.1, pp.9-20, 1988.

G. Adams, J. Foley, and R. Meyer, Muscle buffer capacity estimated from pH changes during rest-towork transitions, J Appl Physiol, vol.69, issue.3, pp.968-72, 1990.

O. Lowry, N. Rosebrough, A. Farr, and R. Randall, Protein measurement with the Folin phenol reagent, J Biol Chem, vol.193, issue.1, pp.265-75, 1951.

A. Ally, G. Park, . Adp, and G. Amp, Rapid determination of creatine, phosphocreatine, purine bases and nucleotides (ATP, ADP, AMP, GTP, GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography, Journal of Chromatography B: Biomedical Sciences and Applications, vol.575, issue.1, pp.19-27, 1992.
DOI : 10.1016/0378-4347(92)80499-G

A. Kuznetsov, V. Veksler, F. Gellerich, V. Saks, R. Margreiter et al., Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells, Nature Protocols, vol.444, issue.6, pp.965-7661, 2008.
DOI : 10.1038/nprot.2008.61

V. Bezaire, L. Spriet, S. Campbell, N. Sabet, M. Gerrits et al., Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation, The FASEB Journal, vol.19, issue.8, pp.977-986, 2005.
DOI : 10.1096/fj.04-2765fje

J. Maclellan, M. Gerrits, A. Gowing, P. Smith, M. Wheeler et al., Physiological Increases in Uncoupling Protein 3 Augment Fatty Acid Oxidation and Decrease Reactive Oxygen Species Production Without Uncoupling Respiration in Muscle Cells, Diabetes, vol.54, issue.8, pp.2343-50, 2005.
DOI : 10.2337/diabetes.54.8.2343

J. Lawson and R. Veech, Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions, J Biol Chem. Epub, vol.25425, issue.1407, pp.6528-6565, 1979.

V. Saks, The phosphocreatine-creatine kinase system helps to shape muscle cells and keep them healthy and alive, The Journal of Physiology, vol.47, issue.12, pp.2817-2825, 2008.
DOI : 10.1113/jphysiol.2008.155358

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ???phosphocreatine circuit??? for cellular energy homeostasis, Biochemical Journal, vol.281, issue.1, pp.21-40, 1992.
DOI : 10.1042/bj2810021

P. Hochachka and G. Mcclelland, Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles, J Exp Biol, vol.200, issue.2, pp.381-387, 1997.

C. Stary and M. Hogan, Phosphorylating pathways and fatigue development in contracting Xenopus single skeletal muscle fibers, Am J Physiol Regul Integr Comp Physiol, vol.278, issue.3, pp.587-91, 2000.

C. Thompson, G. Kemp, A. Sanderson, and G. Radda, Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis, J Appl Physiol, vol.78, issue.6, pp.2131-2140, 1995.

L. Bahi, N. Koulmann, H. Sanchez, I. Momken, V. Veksler et al., Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats?, Journal of Applied Physiology, vol.96, issue.1, pp.59-64, 2004.
DOI : 10.1152/japplphysiol.00323.2003

C. Perry, D. Kane, C. Lin, R. Kozy, B. Cathey et al., Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle, Biochemical Journal, vol.256, issue.257, pp.215-237, 2011.
DOI : 10.1152/ajpcell.00052.2007

S. Lotteau, S. Ducreux, C. Romestaing, C. Legrand, and F. Van-coppenolle, Characterization of Functional TRPV1 Channels in the Sarcoplasmic Reticulum of Mouse Skeletal Muscle, PLoS ONE, vol.430, issue.3, p.3594164, 2013.
DOI : 10.1371/journal.pone.0058673.s001

URL : https://hal.archives-ouvertes.fr/halsde-00804903

Y. Kazuya, A. Tonson, E. Pecchi, C. Dalmasso, C. Vilmen et al., A single intake of capsiate improves mechanical performance and bioenergetics efficiency in contracting mouse skeletal muscle, AJP: Endocrinology and Metabolism, vol.306, issue.10
DOI : 10.1152/ajpendo.00520.2013

N. Ito, U. Ruegg, A. Kudo, Y. Miyagoe-suzuki, and S. Takeda, Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy, Nature Medicine, vol.81, issue.1, 2013.
DOI : 10.1046/j.1523-1747.2003.12329.x

S. Bodine, T. Stitt, M. Gonzalez, W. Kline, G. Stover et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nature Cell Biology, vol.3, issue.11, pp.1014-1023, 2001.
DOI : 10.1038/ncb1101-1014

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-70, 2008.
DOI : 10.1152/physiol.00041.2007

B. Zhao, R. Wall, and Y. J. , Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance, Biochemical and Biophysical Research Communications, vol.337, issue.1, pp.248-55, 2005.
DOI : 10.1016/j.bbrc.2005.09.044

B. Faraut, B. Giannesini, V. Matarazzo, T. Marqueste, C. Dalmasso et al., Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration, AJP: Endocrinology and Metabolism, vol.292, issue.5, pp.1474-82, 2007.
DOI : 10.1152/ajpendo.00292.2006

URL : https://hal.archives-ouvertes.fr/hal-00194555