. P. Dr and P. C. Punt, The Netherlands) for providing the fungal expression plasmids, J.J. van den Hondel

. Marseille, 163 avenue de Luminy

J. Vijayakumar, R. Aravindan, and T. Viruthagiri, Recent trends in the production, purification and application of lactic acid, Chem Biochem Eng Q, vol.22, pp.245-64, 2008.

C. Miller, A. Fosmer, B. Rush, M. Mullin, T. Beacom et al., Industrial production of lactic acid, Compr Biotechnol, vol.3, pp.179-88, 2011.

Y. Wee, J. Kim, and H. Ryu, Biotechnological production of lactic acid and its recent applications, Food Technol Biotechnol, vol.44, pp.163-72, 2006.

K. Jem, J. Van-der-pol, and S. De-vos, Microbial Lactic Acid, Its Polymer Poly(lactic acid), and Their Industrial Applications, Plastic from Bacteria, pp.323-369, 2010.
DOI : 10.1007/978-3-642-03287-5_13

K. Hofvendahl, ?. Hahn, and B. Hägerdal, Factors affecting the fermentative lactic acid production from renewable resources1, Enzyme and Microbial Technology, vol.26, issue.2-4, pp.87-107, 2000.
DOI : 10.1016/S0141-0229(99)00155-6

S. Taskila and H. Ojamo, The current status and future expectations in industrial production of lactic acid by lactic acid bacteria Lactic Acid Bacteria -R & D for Food, Health and Livestock Purposes, pp.615-647, 2013.

S. Colombié, S. Dequin, and J. Sablayrolles, Control of lactate production by Saccharomyces cerevisiae expressing a bacterial LDH gene, Enzyme and Microbial Technology, vol.33, issue.1, pp.38-46, 2003.
DOI : 10.1016/S0141-0229(03)00082-6

N. Ishida, S. Saitoh, K. Tokuhiro, E. Nagamori, T. Matsuyama et al., Efficient Production of L-Lactic Acid by Metabolically Engineered Saccharomyces cerevisiae with a Genome-Integrated L-Lactate Dehydrogenase Gene, Applied and Environmental Microbiology, vol.71, issue.4, pp.1964-70, 2005.
DOI : 10.1128/AEM.71.4.1964-1970.2005

S. Saitoh, N. Ishida, T. Onishi, K. Tokuhiro, E. Nagamori et al., Genetically Engineered Wine Yeast Produces a High Concentration of L-Lactic Acid of Extremely High Optical Purity, Applied and Environmental Microbiology, vol.71, issue.5, pp.2789-92, 2005.
DOI : 10.1128/AEM.71.5.2789-2792.2005

C. Skory, Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene, Journal of Industrial Microbiology & Biotechnology, vol.30, issue.1, pp.22-29, 2003.
DOI : 10.1007/s10295-002-0004-2

M. Valli, M. Sauer, P. Branduardi, N. Borth, D. Porro et al., Improvement of Lactic Acid Production in Saccharomyces cerevisiae by Cell Sorting for High Intracellular pH, Applied and Environmental Microbiology, vol.72, issue.8, pp.5492-5501, 2006.
DOI : 10.1128/AEM.00683-06

M. Bianchi, L. Brambilla, F. Protani, C. Liu, J. Lievense et al., Efficient Homolactic Fermentation by Kluyveromyces lactis Strains Defective in Pyruvate Utilization and Transformed with the Heterologous LDH Gene, Applied and Environmental Microbiology, vol.67, issue.12
DOI : 10.1128/AEM.67.12.5621-5625.2001

M. Ilmén, K. Koivuranta, L. Ruohonen, V. Rajgarhia, P. Suominen et al., Production of l-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases, Microbial Cell Factories, vol.12, issue.1, p.53, 2013.
DOI : 10.1093/nar/19.20.5791

K. Koivuranta, M. Ilmén, M. Wiebe, L. Ruohonen, P. Suominen et al., L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene, Microbial Cell Factories, vol.457, issue.52, p.107, 2014.
DOI : 10.1186/s12934-014-0107-2

F. Gírio, C. Fonseca, F. Carvalheiro, L. Duarte, S. Marques et al., Hemicelluloses for fuel ethanol: A review, Bioresource Technology, vol.101, issue.13, pp.4775-800, 2010.
DOI : 10.1016/j.biortech.2010.01.088

G. Sanchez, R. Karhumaa, K. Fonseca, C. , S. Nogué et al., Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering, Biotechnology for Biofuels, vol.3, issue.1, p.13, 2010.
DOI : 10.1186/1754-6834-3-13

M. Ilmén, K. Koivuranta, L. Ruohonen, P. Suominen, and M. Penttilä, Efficient Production of L-Lactic Acid from Xylose by Pichia stipitis, Applied and Environmental Microbiology, vol.73, issue.1, pp.117-140, 2007.
DOI : 10.1128/AEM.01311-06

T. Hasunuma, F. Okazaki, N. Okai, K. Hara, J. Ishii et al., A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology, Bioresource Technology, vol.135, pp.513-535, 2013.
DOI : 10.1016/j.biortech.2012.10.047

C. Sánchez, Lignocellulosic residues: Biodegradation and bioconversion by fungi, Biotechnology Advances, vol.27, issue.2, pp.185-94, 2009.
DOI : 10.1016/j.biotechadv.2008.11.001

C. Soccol, V. Stonoga, and M. Raimbault, Production of l-lactic acid by Rhizopus species, World Journal of Microbiology & Biotechnology, vol.7, issue.4, pp.433-438, 1994.
DOI : 10.1007/BF00144467

P. Mudaliyar and K. Chandrashekar, Screening of novel substrates for lactic acid production by Rhizopus oryzae, Int J Life Sci Pharma Rev, vol.2, pp.128-161, 2012.

Z. Zhang, J. B. Kelly, and J. , Production of lactic acid from renewable materials by Rhizopus fungi, Biochemical Engineering Journal, vol.35, issue.3, pp.251-63, 2007.
DOI : 10.1016/j.bej.2007.01.028

J. Magnuson and L. Lasure, Organic Acid Production by Filamentous Fungi, Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine, pp.307-347, 2004.
DOI : 10.1007/978-1-4419-8859-1_12

A. Tay and S. Yang, Production ofL(+)-lactic acid from glucose and starch by immobilized cells ofRhizopus oryzae in a rotating fibrous bed bioreactor, Biotechnology and Bioengineering, vol.77, issue.79, pp.1-12, 2002.
DOI : 10.1002/bit.10340

R. Maas, R. Bakker, G. Eggink, and R. Weusthuis, Lactic acid production from xylose by the fungus Rhizopus oryzae, Applied Microbiology and Biotechnology, vol.51, issue.52, pp.861-869, 2006.
DOI : 10.1007/s00253-006-0379-5

K. Saito, Y. Hasa, and H. Abe, Production of lactic acid from xylose and wheat straw by Rhizopus oryzae, Journal of Bioscience and Bioengineering, vol.114, issue.2, pp.166-175, 2012.
DOI : 10.1016/j.jbiosc.2012.03.007

G. Vially, R. Marchal, and N. Guilbert, L(+) Lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77, World Journal of Microbiology and Biotechnology, vol.77, issue.79, pp.607-621, 2009.
DOI : 10.1007/s11274-009-0210-4

E. Park, P. Anh, and N. Okuda, Bioconversion of waste office paper to ?(+)-lactic acid by the filamentous fungus Rhizopus oryzae, Bioresource Technology, vol.93, issue.1, pp.77-83, 2004.
DOI : 10.1016/j.biortech.2003.08.017

D. Vries and R. , Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production, Applied Microbiology and Biotechnology, vol.61, issue.1
DOI : 10.1007/s00253-002-1171-9

J. Varga, S. Kocsubé, B. Tóth, J. Frisvad, G. Perrone et al., Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.57, issue.8, pp.1925-1957, 2007.
DOI : 10.1099/ijs.0.65021-0

J. Frisvad, T. Larsen, U. Thrane, M. Meijer, J. Varga et al., Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains, PLoS ONE, vol.59, issue.8, p.23496, 2011.
DOI : 10.1371/journal.pone.0023496.s007

N. Liaud, C. Giniés, D. Navarro, N. Fabre, S. Crapart et al., Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi, Fungal Biology and Biotechnology, vol.322, issue.1, p.1, 2014.
DOI : 10.1186/s40694-014-0001-z

N. Ishida, S. Saitoh, T. Onishi, K. Tokuhiro, E. Nagamori et al., -Lactic Acid Production, Bioscience, Biotechnology, and Biochemistry, vol.70, issue.5, pp.1148-53, 2006.
DOI : 10.1271/bbb.70.1148

URL : https://hal.archives-ouvertes.fr/hal-01304648

Y. Ida, C. Furusawa, T. Hirasawa, and H. Shimizu, Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, vol.113, issue.2, pp.192-197, 2012.
DOI : 10.1016/j.jbiosc.2011.09.019

C. Cogoni and G. Macino, Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme, Current Opinion in Microbiology, vol.2, issue.6, pp.657-62, 1999.
DOI : 10.1016/S1369-5274(99)00041-7

D. Lubertozzi and J. Keasling, Developing Aspergillus as a host for heterologous expression, Biotechnology Advances, vol.27, issue.1, pp.53-75, 2009.
DOI : 10.1016/j.biotechadv.2008.09.001

C. Kubicek, P. Punt, and J. Visser, Production of Organic Acids by Filamentous Fungi, Industrial Applications, pp.215-249, 2011.
DOI : 10.1007/978-3-642-11458-8_10

N. Ishida, S. Saitoh, T. Ohnishi, K. Tokuhiro, E. Nagamori et al., Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Efficient Production of Pure L-(+)-Lactic Acid, Applied Biochemistry and Biotechnology, vol.131, issue.1-3, pp.795-807, 2006.
DOI : 10.1385/ABAB:131:1:795

C. Skory, Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity, Applied Microbiology and Biotechnology, vol.64, issue.2, pp.237-279, 2004.
DOI : 10.1007/s00253-003-1480-7

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=25865&content=PDF

P. Branduardi, M. Sauer, D. Gioia, L. Zampella, G. Valli et al., Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export, Microbial Cell Factories, vol.5, issue.1, p.4, 2006.
DOI : 10.1186/1475-2859-5-4

R. Verho, J. Londesborough, M. Penttila, and P. Richard, Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae, Applied and Environmental Microbiology, vol.69, issue.10, pp.5892-5899, 2003.
DOI : 10.1128/AEM.69.10.5892-5897.2003

C. Witteveen, R. Busink, P. Van-de-vondervoort, C. Dijkema, K. Swart et al., L-Arabinose and D-Xylose Catabolism in Aspergillus niger, Microbiology, vol.135, issue.8, pp.2163-71, 1989.
DOI : 10.1099/00221287-135-8-2163

P. Punt and C. Van-den-hondel, [39] Transformation of filamentous fungi based on hygromycin b and phleomycin resistance markers, Methods Enzymol, vol.216, pp.447-57, 1992.
DOI : 10.1016/0076-6879(92)16041-H

N. Liaud, D. Navarro, N. Vidal, J. Sigoillot, and S. Raouche, High throughput automated colorimetric method for the screening of l-lactic acid producing microorganisms, MethodsX, vol.1, pp.254-261, 2014.
DOI : 10.1016/j.mex.2014.10.001

A. Untergrasser, I. Cutcutache, T. Koressaar, J. Ye, B. Faircloth et al., Primer3--new capabilities and interfaces, Nucleic Acids Research, vol.40, issue.15, p.115, 2012.
DOI : 10.1093/nar/gks596