J. Pillay, I. Den-braber, N. Vrisekoop, L. Kwast, R. De-boer et al., In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days, Blood, vol.116, issue.4, pp.625-632, 2010.
DOI : 10.1182/blood-2010-01-259028

C. Payne, L. Glasser, M. Tischler, D. Wyckoff, D. Cromey et al., Programmed cell death of the normal human neutrophil: An in vitro model of senescence, Microscopy Research and Technique, vol.82, issue.4, pp.327-371, 1994.
DOI : 10.1002/jemt.1070280408

M. Stark, Y. Huo, T. Burcin, M. Morris, T. Olson et al., Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17, Immunity, vol.22, issue.3, pp.285-94, 2005.
DOI : 10.1016/j.immuni.2005.01.011

J. Savill, A. Wyllie, J. Henson, M. Walport, P. Henson et al., Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages., Journal of Clinical Investigation, vol.83, issue.3, pp.865-75, 1989.
DOI : 10.1172/JCI113970

W. Nauseef, How human neutrophils kill and degrade microbes: an integrated view, Immunological Reviews, vol.175, issue.1, pp.88-102, 2007.
DOI : 10.1073/pnas.0337370100

C. Janeway, Approaching the Asymptote? Evolution and Revolution in Immunology, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.0, pp.1-13, 1989.
DOI : 10.1101/SQB.1989.054.01.003

B. Mcdonald, K. Pittman, G. Menezes, S. Hirota, I. Slaba et al., Intravascular Danger Signals Guide Neutrophils to Sites of Sterile Inflammation, Science, vol.330, issue.6002, pp.362-368, 2010.
DOI : 10.1126/science.1195491

S. Anwar and M. Whyte, NEUTROPHIL APOPTOSIS IN INFECTIOUS DISEASE, Experimental Lung Research, vol.66, issue.1, pp.519-547, 2007.
DOI : 10.4049/jimmunol.169.2.898

F. Deleo, Modulation of phagocyte apoptosis by bacterial pathogens, Apoptosis, vol.9, issue.4, pp.399-413, 2004.
DOI : 10.1023/B:APPT.0000031448.64969.fa

M. Elliott and K. Ravichandran, Clearance of apoptotic cells: implications in health and disease, The Journal of Cell Biology, vol.163, issue.7, pp.1059-70, 2010.
DOI : 10.1016/j.cell.2008.01.033

M. François, L. Cabec, V. Dupont, M. Sansonetti, and P. , Induction of Necrosis in Human Neutrophils by Shigella flexneri Requires Type III Secretion, IpaB and IpaC Invasins, and Actin Polymerization, Infection and Immunity, vol.68, issue.3, pp.1289-96, 2000.
DOI : 10.1128/IAI.68.3.1289-1296.2000

L. Usher, R. Lawson, I. Geary, C. Taylor, C. Bingle et al., Induction of Neutrophil Apoptosis by the Pseudomonas aeruginosa Exotoxin Pyocyanin: A Potential Mechanism of Persistent Infection, The Journal of Immunology, vol.168, issue.4, pp.1861-1869, 2002.
DOI : 10.4049/jimmunol.168.4.1861

D. Dacheux, B. Toussaint, M. Richard, G. Brochier, J. Croize et al., Pseudomonas aeruginosa Cystic Fibrosis Isolates Induce Rapid, Type III Secretion-Dependent, but ExoU-Independent, Oncosis of Macrophages and Polymorphonuclear Neutrophils, Infection and Immunity, vol.68, issue.5, pp.2916-2940, 2000.
DOI : 10.1128/IAI.68.5.2916-2924.2000

H. Scaife, Z. Woldehiwet, C. Hart, and S. Edwards, Anaplasma phagocytophilum Reduces Neutrophil Apoptosis In Vivo, Infection and Immunity, vol.71, issue.4, pp.1995-2001, 2003.
DOI : 10.1128/IAI.71.4.1995-2001.2003

G. Van-zandbergen, J. Gieffers, H. Kothe, J. Rupp, A. Bollinger et al., Chlamydia pneumoniae Multiply in Neutrophil Granulocytes and Delay Their Spontaneous Apoptosis, The Journal of Immunology, vol.172, issue.3, pp.1768-1776, 2004.
DOI : 10.4049/jimmunol.172.3.1768

E. Barquero-calvo, E. Chaves-olarte, D. Weiss, C. Guzmán-verri, C. Chacón-díaz et al., Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection, PLoS ONE, vol.178, issue.178, pp.631-17637846, 2007.
DOI : 10.1371/journal.pone.0000631.t001

A. Martirosyan, E. Moreno, and J. Gorvel, An evolutionary strategy for a stealthy intracellular Brucella pathogen, Immunological Reviews, vol.38, issue.1, pp.211-245, 2011.
DOI : 10.1111/j.1600-065X.2010.00982.x

URL : https://hal.archives-ouvertes.fr/hal-00609655

E. Barquero-calvo, R. Conde-alvarez, C. Chacón-díaz, L. Quesada-lobo, A. Martirosyan et al., The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens, PLoS ONE, vol.4, issue.6, 2009.
DOI : 10.1371/journal.pone.0005893.t001

URL : https://hal.archives-ouvertes.fr/hal-00431866

E. Barquero-calvo, A. Martirosyan, D. Ordoñez-rueda, V. Arce-gorvel, A. Alfaro-alarcón et al., Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus, PLoS Pathogens, vol.142, issue.Pt 4, p.23458832, 2013.
DOI : 10.1371/journal.ppat.1003167.s009

J. Gorvel and E. Moreno, Brucella intracellular life: from invasion to intracellular replication, Veterinary Microbiology, vol.90, issue.1-4, pp.281-97, 2002.
DOI : 10.1016/S0378-1135(02)00214-6

R. Roop, J. Gaines, E. Anderson, C. Caswell, and D. Martin, Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host, Medical Microbiology and Immunology, vol.8, issue.83, pp.221-259, 2009.
DOI : 10.1007/s00430-009-0123-8

A. Gross, A. Terraza, S. Ouahrani-bettache, J. Liautard, and J. Dornand, In Vitro Brucella suis Infection Prevents the Programmed Cell Death of Human Monocytic Cells, Infection and Immunity, vol.68, issue.1, pp.342-51, 2000.
DOI : 10.1128/IAI.68.1.342-351.2000

URL : https://hal.archives-ouvertes.fr/hal-00193968

A. Braude, Studies in the Pathology and Pathogenesis of Experimental Brucellosis: II. The Formation of the Hepatic Granuloma and its Evolution, Journal of Infectious Diseases, vol.89, issue.1, pp.87-94, 1951.
DOI : 10.1093/infdis/89.1.87

M. Ackermann, N. Cheville, and B. Deyoe, Strain 19, Veterinary Pathology, vol.19, issue.1, pp.28-35, 1988.
DOI : 10.1177/030098588802500104

D. Kreutzer, L. Dreyfus, and D. Robertson, Interaction of polymorphonuclear leukocytes with smooth and rough strains of Brucella abortus, Infect Immun, vol.23, pp.737-779, 1979.

G. Martínez-de-tejada, J. Pizarro-cerdá, E. Moreno, and I. Moriyón, The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides, Infect Immun, vol.63, pp.3054-61, 1995.

E. Crosby, L. Llosa, M. Quesada, M. Carrillo, C. Gotuzzo et al., Hematologic Changes in Brucellosis, Journal of Infectious Diseases, vol.150, issue.3, pp.419-443, 1984.
DOI : 10.1093/infdis/150.3.419

R. Copin, M. Vitry, H. Mambres, D. Machelart, A. et al., In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice, PLoS Pathogens, vol.5, issue.3, p.22479178, 2012.
DOI : 10.1371/journal.ppat.1002575.s014

C. Prouty, Studies on the leucocyte content of milk drawn from Brucella abortus infected udders, J Bacteriol, vol.27, pp.293-301, 1934.

L. Riley and D. Robertson, Ingestion and intracellular survival of Brucella abortus in human and bovine polymorphonuclear leukocytes, Infect Immun, vol.46, pp.224-254, 1984.

A. Orduña, C. Orduña, J. Eiros, M. Bratos, P. Gutiérrez et al., Inhibition of the degranulation and myeloperoxidase activity of human polymorphonuclear neutrophils by Brucella melitensis, Microbiología, vol.7, pp.113-122, 1991.

C. Forestier, E. Moreno, J. Pizarro-cerda, and J. Gorvel, Lysosomal accumulation and recycling of lipopolysaccharide to the cell surface of murine macrophages, an in vitro and in vivo study, J Immunol, vol.162, pp.6784-6791, 1999.

E. Moreno and J. Gorvel, Invasion, intracellular trafficking and replication of Brucella organisms in professional and non-professional phagocytes, Brucella: Molecular and Cellular Biology. United Kingdom, pp.287-312, 2004.

C. Forestier, F. Deleuil, N. Lapaque, E. Moreno, and J. Gorvel, Brucella abortus Lipopolysaccharide in Murine Peritoneal Macrophages Acts as a Down-Regulator of T Cell Activation, The Journal of Immunology, vol.165, issue.9, pp.5202-5212, 2000.
DOI : 10.4049/jimmunol.165.9.5202

E. Chaves-olarte, P. Altamirano-silva, C. Guzmán-verri, and E. Moreno, Purification of intracellular bacteria: isolation of viable Brucella abortus from host cells. Host-Bacteria Interactions, Methods Protoc, vol.1197, pp.245-60, 2014.

L. Riley and D. Robertson, Brucellacidal activity of human and bovine polymorphonuclear leukocyte granule extracts against smooth and rough strains of Brucella abortus, Infect Immun, vol.46, pp.231-236, 1984.

S. Salcedo, M. Marchesini, H. Lelouard, E. Fugier, G. Jolly et al., Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1, PLoS Pathogens, vol.61, issue.2, p.18266466, 2008.
DOI : 10.1371/journal.ppat.0040021.sg008

URL : https://hal.archives-ouvertes.fr/hal-00294210

M. Caroff, D. Bundle, and M. Perry, Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9, European Journal of Biochemistry, vol.51, issue.1, pp.195-200, 1984.
DOI : 10.1016/0304-4165(79)90280-0

M. Caroff, D. Bundle, M. Perry, J. Cherwonogrodzky, and J. Duncan, Antigenic S-type lipopolysaccharide of Brucella abortus 1119?3, Infect Immun, vol.46, pp.384-392, 1984.

C. Pérez-gutiérrez, E. Llobet, C. Llompart, M. Reinés, and J. Bengoechea, Role of Lipid A Acylation in Yersinia enterocolitica Virulence, Infection and Immunity, vol.78, issue.6, pp.2768-81, 2010.
DOI : 10.1128/IAI.01417-09

M. Iriarte, D. González, R. Delrue, D. Monreal, R. Conde et al., Brucella lipopolysaccharide: structure, biosynthesis and genetics, Brucella: Molecular and Cellular Biology Horizon Bioscience, pp.159-191, 2004.

R. Conde-Álvarez, V. Arce-gorvel, M. Iriarte, M. Man?ek-keber, E. Barquero-calvo et al., The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition, PLoS Pathogens, vol.1329, issue.5, p.22589715, 2012.
DOI : 10.1371/journal.ppat.1002675.s011

J. Kubler-kielb and E. Vinogradov, The study of the core part and non-repeating elements of the O-antigen of Brucella lipopolysaccharide, Carbohydrate Research, vol.366, pp.33-40, 2013.
DOI : 10.1016/j.carres.2012.11.004

J. Velasco, J. Bengoechea, K. Brandenburg, B. Lindner, U. Seydel et al., Brucella abortus and Its Closest Phylogenetic Relative, Ochrobactrum spp., Differ in Outer Membrane Permeability and Cationic Peptide Resistance, Infection and Immunity, vol.68, issue.6, pp.3210-3218, 2000.
DOI : 10.1128/IAI.68.6.3210-3218.2000

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC97564

I. Sabroe, S. Dower, and M. Whyte, The Role of Toll-Like Receptors in the Regulation of Neutrophil Migration, Activation, and Apoptosis, Clinical Infectious Diseases, vol.41, issue.Supplement 7, pp.421-427, 2005.
DOI : 10.1086/431992

I. Zanoni, R. Ostuni, G. Capuano, M. Collini, M. Caccia et al., CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation, Nature, vol.5, issue.7252, pp.264-272, 2009.
DOI : 10.1038/nature08118

O. Rasool, E. Freer, E. Moreno, and C. Jarstrand, Effect of Brucella abortus lipopolysaccharide on oxidative metabolism and lysozyme release by human neutrophils, Infect Immun, vol.60, pp.1699-702, 1992.

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil Extracellular Traps Kill Bacteria, Science, vol.303, issue.5663, pp.1532-1537, 2004.
DOI : 10.1126/science.1092385

T. Fuchs, U. Abed, C. Goosmann, R. Hurwitz, I. Schulze et al., Novel cell death program leads to neutrophil extracellular traps, The Journal of Cell Biology, vol.74, issue.2, pp.231-272, 2007.
DOI : 10.1073/pnas.85.22.8531

B. Geering and H. Simon, Peculiarities of cell death mechanisms in neutrophils, Cell Death and Differentiation, vol.62, issue.9, pp.1457-69, 2011.
DOI : 10.1074/jbc.M604051200

J. Stolk, T. Hiltermann, J. Dijkman, and A. Verhoeven, Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol., American Journal of Respiratory Cell and Molecular Biology, vol.11, issue.1, pp.95-102, 1994.
DOI : 10.1165/ajrcmb.11.1.8018341

U. Bayraktutan, N. Draper, D. Lang, and A. Shah, Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells, Cardiovascular Research, vol.38, issue.1, pp.256-62, 1998.
DOI : 10.1016/S0008-6363(98)00003-0

D. Roos, R. Weening, S. Wyss, and H. Aebi, Protection of Human Neutrophils by Endogenous Catalase, Journal of Clinical Investigation, vol.65, issue.6, pp.1515-1537, 1980.
DOI : 10.1172/JCI109817

B. Larsen, S. Rampalli, L. Burns, S. Brunette, F. Dilworth et al., Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks, Proceedings of the National Academy of Sciences, vol.107, issue.9, pp.4230-4235, 2010.
DOI : 10.1073/pnas.0913089107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840077

S. Kamada, Y. Funahashi, and Y. Tsujimoto, Caspase-4 and caspase-5, members of the ICE/CED-3 family of cysteine proteases, are CrmA-inhibitable proteases, Cell Death and Differentiation, vol.4, issue.6, pp.473-481, 1997.
DOI : 10.1038/sj.cdd.4400268

D. Ofengeim and J. Yuan, Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death, Nature Reviews Molecular Cell Biology, vol.3, issue.11, pp.727-763, 2013.
DOI : 10.1038/nrm3683

P. Colussi and S. Kumar, Targeted disruption of caspase genes in mice: What they tell us about the functions of individual caspases in apoptosis, Immunology and Cell Biology, vol.8, issue.1, pp.58-63, 1999.
DOI : 10.1093/emboj/17.3.706

T. Zheng, S. Hunot, K. Kuida, and R. Flavell, Caspase knockouts: matters of life and death, Cell Death and Differentiation, vol.6, issue.11, pp.1043-53, 1999.
DOI : 10.1038/sj.cdd.4400593

M. Acorci, L. Dias-melicio, M. Golim, A. Bordon-graciani, M. Peraçoli et al., : Role of Interleukin-8, Scandinavian Journal of Immunology, vol.51, issue.2, pp.73-82, 2009.
DOI : 10.1111/j.1365-3083.2008.02199.x

S. Afford, J. Pongracz, R. Stockley, J. Crocker, and D. Burnett, The induction by human interleukin-6 of apoptosis in the promonocytic cell line U937 and human neutrophils, J Biol Chem, vol.267, pp.21612-21618, 1992.

F. Colotta, F. Re, N. Polentarutti, S. Sozzani, and A. Mantovani, Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products, Blood, vol.80, pp.2012-2020, 1992.

M. Ocaña, V. Asensi, A. Montes, A. Meana, A. Celada et al., Autoregulation mechanism of human neutrophil apoptosis during bacterial infection???, Molecular Immunology, vol.45, issue.7, pp.2087-96, 2008.
DOI : 10.1016/j.molimm.2007.10.013

J. Baran, K. Guzik, W. Hryniewicz, M. Ernst, H. Flad et al., Apoptosis of monocytes and prolonged survival of granulocytes as a result of phagocytosis of bacteria, Infect Immun, vol.64, pp.4242-4250, 1996.

G. Tumurkhuu, N. Koide, K. Takahashi, F. Hassan, S. Islam et al., Lipopolysaccharide, Microbiology and Immunology, vol.57, issue.6, pp.421-428, 2006.
DOI : 10.1111/j.1348-0421.2006.tb03810.x

D. Weiss, K. Takeda, S. Akira, A. Zychlinsky, and E. Moreno, MyD88, but Not Toll-Like Receptors 4 and 2, Is Required for Efficient Clearance of Brucella abortus, Infection and Immunity, vol.73, issue.8, pp.5137-5143, 2005.
DOI : 10.1128/IAI.73.8.5137-5143.2005

J. Goldstein, T. Hoffman, C. Frasch, E. Lizzio, P. Beining et al., Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines, Infect Immun, vol.60, pp.1385-1394, 1992.

A. Dueñas, A. Orduña, M. Crespo, C. García-rodríguez, B. Lps et al., Interaction of endotoxins with Toll-like receptor 4 correlates with their endotoxic potential and may explain the proinflammatory effect of Brucella spp. LPS, International Immunology, vol.16, issue.10, pp.1467-75, 2004.
DOI : 10.1093/intimm/dxh148

R. Kettritz, M. Gaido, H. Haller, F. Luft, C. Jennette et al., Interleukin-8 delays spontaneous and tumor necrosis factor-??-mediated apoptosis of human neutrophils, Kidney International, vol.53, issue.1, pp.84-91, 1998.
DOI : 10.1046/j.1523-1755.1998.00741.x

J. Altstaedt, H. Kirchner, and L. Rink, Cytokine production of neutrophils is limited to interleukin-8, Immunology, vol.89, issue.4, pp.563-571, 1996.
DOI : 10.1046/j.1365-2567.1996.d01-784.x

I. Sabroe, E. Jones, L. Usher, M. Whyte, and S. Dower, Toll-Like Receptor (TLR)2 and TLR4 in Human Peripheral Blood Granulocytes: A Critical Role for Monocytes in Leukocyte Lipopolysaccharide Responses, The Journal of Immunology, vol.168, issue.9, pp.4701-4711, 2002.
DOI : 10.4049/jimmunol.168.9.4701

C. Ward, E. Chilvers, M. Lawson, J. Pryde, S. Fujihara et al., NF-kappa B Activation Is a Critical Regulator of Human Granulocyte Apoptosis in Vitro, Journal of Biological Chemistry, vol.274, issue.7, pp.4309-4327, 1999.
DOI : 10.1074/jbc.274.7.4309

B. Fadeel, A. Ahlin, J. Henter, S. Orrenius, and M. Hampton, Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species, Blood, vol.92, pp.4808-4826, 1998.

C. Gamazo and I. Moriyón, Release of outer membrane fragments by exponentially growing Brucella melitensis cells, Infect Immun, vol.55, pp.609-624, 1987.

A. Zwerdling, M. Delpino, K. Pasquevich, P. Barrionuevo, J. Cassataro et al., Brucella abortus activates human neutrophils, Microbes and Infection, vol.11, issue.6-7, pp.689-97, 2009.
DOI : 10.1016/j.micinf.2009.04.010

N. Lapaque, O. Takeuchi, F. Corrales, S. Akira, I. Moriyon et al., Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides, Cellular Microbiology, vol.168, issue.3, pp.401-414, 2006.
DOI : 10.1074/jbc.M313370200

N. Lapaque, A. Muller, L. Alexopoulou, J. Howard, and J. Gorvel, Brucella abortus induces Irgm3 and Irga6 expression via type-I IFN by a MyD88-dependent pathway, without the requirement of TLR2, TLR4, TLR5 and TLR9, Microbial Pathogenesis, vol.47, issue.6, pp.299-304, 2009.
DOI : 10.1016/j.micpath.2009.09.005

URL : https://hal.archives-ouvertes.fr/hal-00431861

D. Rodeberg, R. Morris, and G. Babcock, Azurophilic granules of human neutrophils contain CD14, Infect Immun, vol.65, pp.4747-53, 1997.

N. Lapaque, F. Forquet, C. De-chastellier, Z. Mishal, G. Jolly et al., Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts, Cellular Microbiology, vol.8, issue.2, pp.197-206, 2006.
DOI : 10.1074/jbc.M313370200

URL : https://hal.archives-ouvertes.fr/hal-00080755

M. Lei, L. Du, H. Jiao, Y. Cheng, D. Zhang et al., Inhibition of mCD14 inhibits TNF?? secretion and NO production in RAW264.7 cells stimulated by Brucella melitensis infection, Veterinary Microbiology, vol.160, issue.3-4, p.22770519, 2012.
DOI : 10.1016/j.vetmic.2012.05.039

N. Lapaque, I. Moriyon, E. Moreno, and J. Gorvel, Brucella lipopolysaccharide acts as a virulence factor, Current Opinion in Microbiology, vol.8, issue.1, pp.60-66, 2005.
DOI : 10.1016/j.mib.2004.12.003

URL : https://hal.archives-ouvertes.fr/hal-00165710

J. Weersink, P. Antal-szalmas, J. Strijp, . Van, K. Kessel et al., Quantitation of surface neutrophils CD14 on human monocytes and, J Leukoc Biol, vol.61, pp.721-728, 1997.

J. Celli, C. De-chastellier, D. Franchini, J. Pizarro-cerda, E. Moreno et al., Evades Macrophage Killing via VirB-dependent Sustained Interactions with the Endoplasmic Reticulum, The Journal of Experimental Medicine, vol.114, issue.4, pp.545-56, 2003.
DOI : 10.1038/35052017

H. Simon, A. Haj-yehia, and F. Levi-schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, APOPTOSIS, vol.5, issue.5, pp.415-423, 2000.
DOI : 10.1023/A:1009616228304

N. Almyroudis, M. Grimm, B. Davidson, M. Röhm, C. Urban et al., NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury, Frontiers in Immunology, vol.4, p.23459634, 2013.
DOI : 10.3389/fimmu.2013.00045

M. Meuth, Chk1 suppressed cell death, Cell Division, vol.5, issue.1, p.20813042, 2010.
DOI : 10.1186/1747-1028-5-21

N. Festjens, V. Berghe, T. Cornelis, S. Vandenabeele, and P. , RIP1, a kinase on the crossroads of a cell's decision to live or die, Cell Death and Differentiation, vol.175, issue.3, pp.400-410, 2007.
DOI : 10.1084/jem.20050683

M. Olofsson, A. Havelka, S. Brnjic, M. Shoshan, and S. Linder, Charting calcium-regulated apoptosis pathways using chemical biology: role of calmodulin kinase II, BMC Chemical Biology, vol.8, issue.1, p.18673549, 2008.
DOI : 10.1186/1472-6769-8-2

E. Miao, J. V. Rajan, and A. Aderem, Caspase-1-induced pyroptotic cell death, Immunological Reviews, vol.12, issue.1, pp.206-220, 2011.
DOI : 10.1111/j.1600-065X.2011.01044.x

M. Bakele, M. Joos, S. Burdi, N. Allgaier, S. Pöschel et al., Localization and Functionality of the Inflammasome in Neutrophils, Journal of Biological Chemistry, vol.289, issue.8, pp.5320-5329, 2014.
DOI : 10.1074/jbc.M113.505636

E. Miao, I. Leaf, P. Treuting, D. Mao, M. Dors et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nature Immunology, vol.180, issue.12, pp.1136-1178, 1960.
DOI : 10.1016/S1286-4579(01)01496-4

I. Brodsky and R. Medzhitov, Pyroptosis: Macrophage Suicide Exposes Hidden Invaders, Current Biology, vol.21, issue.2, p.21256438, 2011.
DOI : 10.1016/j.cub.2010.12.008

J. Murray, J. Barbara, S. Dunkley, A. Lopez, X. Van-ostade et al., Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro, Blood, vol.90, pp.2772-2783, 1997.

S. Aggarwal, S. Gollapudi, L. Yel, A. Gupta, and S. Gupta, TNF-??-induced apoptosis in neonatal lymphocytes: TNFRp55 expression and downstream pathways of apoptosis, Genes and Immunity, vol.1, issue.4, pp.271-280, 2000.
DOI : 10.1038/sj.gene.6363674

C. Demir, M. Karahocagil, R. Esen, M. Atmaca, H. Gönüllü et al., Bone marrow biopsy findings in brucellosis patients with hematologic abnormalities, Chin Med J (Engl), vol.125, pp.1871-1877, 2012.

M. El-koumi, M. Afify, and S. Zahrani, A PROSPECTIVE STUDY OF BRUCELLOSIS IN CHILDREN: RELATIVE FREQUENCY OF PANCYTOPENIA, Mediterranean Journal of Hematology and Infectious Diseases, vol.5, issue.1, p.23505599, 2013.
DOI : 10.4084/mjhid.2013.011

G. Kokkini, H. Giotaki, and H. Moutsopoulos, Transient hemophagocytosis in Brucella melitensis infection, Arch Pathol Lab Med, vol.108, pp.213-219, 1984.

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes ??? Trojan horses for Leishmania major and other intracellular microbes?, Trends in Microbiology, vol.11, issue.5, pp.210-214, 2003.
DOI : 10.1016/S0966-842X(03)00075-1

C. Chacón-díaz, M. Muñoz-rodríguez, E. Barquero-calvo, C. Guzmán-verri, E. Chaves-olarte et al., The use of green fluorescent protein as a marker for Brucella vaccines, Vaccine, vol.29, issue.3, pp.577-82, 2011.
DOI : 10.1016/j.vaccine.2010.09.109

E. Moreno, D. Berman, and L. Boettcher, Biological activities of Brucella abortus lipopolysaccharides, Infect Immun, vol.31, pp.362-70, 1981.

A. Espinoza, R. Pereira, A. V. Macaya-lizano, M. Hernández, M. Goulden et al., Comparative Light and Electron Microscopic Analyses of Tenuivirus Major Noncapsid Protein (NCP) Inclusion Bodies in Infected Plants, and of the NCP in Vitro, Virology, vol.195, issue.1, pp.156-66, 1993.
DOI : 10.1006/viro.1993.1356

N. Rojas, E. Freer, A. Weintraub, M. Ramirez, S. Lind et al., Immunochemical identification of Brucella abortus lipopolysaccharide epitopes, Clin Diagn Lab Immunol, vol.1, pp.206-219, 1994.

E. Reynolds, THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY, The Journal of Cell Biology, vol.17, issue.1, pp.208-220, 1963.
DOI : 10.1083/jcb.17.1.208

D. Bundle, J. Cherwonogrodzky, M. Gidney, P. Meikle, M. Perry et al., Definition of Brucella A and M epitopes by monoclonal typing reagents and synthetic oligosaccharides, Infect Immun, vol.57, pp.2829-2865, 1989.

A. Chin, W. Lee, K. Murrin, D. Morck, J. Merrill et al., Tilmicosin Induces Apoptosis in Bovine Peripheral Neutrophils in the Presence or in the Absence of Pasteurella haemolytica and Promotes Neutrophil Phagocytosis by Macrophages, Antimicrobial Agents and Chemotherapy, vol.44, issue.9, pp.2465-70, 2000.
DOI : 10.1128/AAC.44.9.2465-2470.2000

E. Moreno, E. Stackebrandt, M. Dorsch, J. Wolters, M. Busch et al., Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria., Journal of Bacteriology, vol.172, issue.7, pp.3569-76, 1990.
DOI : 10.1128/jb.172.7.3569-3576.1990