D. Sacks and N. Noben-trauth, The immunology of susceptibility and resistance to leishmania major in mice, Nature Reviews Immunology, vol.2, issue.11, pp.845-858, 2002.
DOI : 10.1038/nri933

P. Kaye and P. Scott, Leishmaniasis: complexity at the host???pathogen interface, Nature Reviews Microbiology, vol.74, issue.8, pp.604-615, 2011.
DOI : 10.1038/nrmicro2608

D. Mcmahon-pratt and A. J. , Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease?, Immunological Reviews, vol.165, issue.1, pp.206-224, 2004.
DOI : 10.1001/archderm.134.2.193

A. Hsu and P. Scott, Leishmania mexicana Infection Induces Impaired Lymph Node Expansion and Th1 Cell Differentiation Despite Normal T Cell Proliferation, The Journal of Immunology, vol.179, issue.12, pp.8200-8207, 2007.
DOI : 10.4049/jimmunol.179.12.8200

P. Petritus, D. Manzoni-de-almeida, C. Gimblet, G. Lombana, C. Scott et al., Leishmania mexicana Induces Limited Recruitment and Activation of Monocytes and Monocyte-Derived Dendritic Cells Early during Infection, PLoS Neglected Tropical Diseases, vol.6, issue.10, p.23094119, 2012.
DOI : 10.1371/journal.pntd.0001858.g007

N. Weinheber, M. Wolfram, D. Harbecke, and T. Aebischer, Phagocytosis of Leishmania mexicana amastigotes by macrophages leads to a sustained suppression of IL-12 production, European Journal of Immunology, vol.28, issue.08, pp.2467-2477, 1998.
DOI : 10.1002/(SICI)1521-4141(199808)28:08<2467::AID-IMMU2467>3.3.CO;2-T

C. Bennett, A. Misslitz, L. Colledge, T. Aebischer, and C. Blackburn, Silent infection of bone marrow-derived dendritic cells byLeishmania mexicana amastigotes, European Journal of Immunology, vol.176, issue.3, pp.876-883, 2001.
DOI : 10.1002/1521-4141(200103)31:3<876::AID-IMMU876>3.0.CO;2-I

M. Rodriguez-sosa, G. Monteforte, and A. Satoskar, Susceptibility to Leishmania mexicana infection is due to the inability to produce IL-12 rather than lack of IL-12 responsiveness, Immunology and Cell Biology, vol.154, issue.4, pp.320-322, 2001.
DOI : 10.1002/(SICI)1521-4141(199908)29:08<2524::AID-IMMU2524>3.0.CO;2-H

M. Shweash, A. Mcgachy, H. Schroeder, J. Neamatallah, T. Bryant et al., Leishmania mexicana promastigotes inhibit macrophage IL-12 production via TLR-4 dependent COX-2, iNOS and arginase-1 expression, Molecular Immunology, vol.48, issue.15-16, p.21664694, 2011.
DOI : 10.1016/j.molimm.2011.05.013

I. Contreras, J. Estrada, H. Guak, C. Martel, and A. Borjian, Impact of Leishmania mexicana Infection on Dendritic Cell Signaling and Functions, PLoS Neglected Tropical Diseases, vol.154, issue.9, p.25255446, 2014.
DOI : 10.1371/journal.pntd.0003202.s002

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, and Y. Uhlemann, Neutrophil Extracellular Traps Kill Bacteria, Science, vol.303, issue.5663, pp.1532-1535, 2004.
DOI : 10.1126/science.1092385

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nature Reviews Immunology, vol.121, issue.3, pp.159-175, 2013.
DOI : 10.1038/nri3399

B. Bardoel, E. Kenny, G. Sollberger, and A. Zychlinsky, The Balancing Act of Neutrophils, Cell Host & Microbe, vol.15, issue.5, pp.526-536, 2014.
DOI : 10.1016/j.chom.2014.04.011

W. Beil, G. Meinardus-hager, D. Neugebauer, and C. Sorg, Differences in the onset of the inflammatory response to cutaneous leishmaniasis in resistant and susceptible mice, J Leukoc Biol, vol.52, pp.135-142, 1992.

F. Tacchini-cottier, C. Zweifel, Y. Belkaid, C. Mukankundiye, and M. Vasei, An Immunomodulatory Function for Neutrophils During the Induction of a CD4+ Th2 Response in BALB/c Mice Infected with Leishmania major, The Journal of Immunology, vol.165, issue.5, pp.2628-2636, 2000.
DOI : 10.4049/jimmunol.165.5.2628

N. Peters, J. Egen, N. Secundino, A. Debrabant, and N. Kimblin, In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies, Science, vol.321, issue.5891, pp.970-974, 2008.
DOI : 10.1126/science.1159194

L. Xin, D. Vargas-inchaustegui, S. Raimer, B. Kelly, and J. Hu, Type I IFN Receptor Regulates Neutrophil Functions and Innate Immunity to Leishmania Parasites, The Journal of Immunology, vol.184, issue.12, pp.7047-7056, 2010.
DOI : 10.4049/jimmunol.0903273

C. Thalhofer, Y. Chen, B. Sudan, L. Love-homan, and M. Wilson, Leukocytes Infiltrate the Skin and Draining Lymph Nodes in Response to the Protozoan Leishmania infantum chagasi, Infection and Immunity, vol.79, issue.1, p.20937764, 2011.
DOI : 10.1128/IAI.00338-10

F. Ribeiro-gomes, N. Peters, A. Debrabant, and D. Sacks, Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response, PLoS Pathogens, vol.73, issue.2, p.22359507, 2012.
DOI : 10.1371/journal.ppat.1002536.s004

G. Van-zandbergen, M. Klinger, A. Mueller, S. Dannenberg, and A. Gebert, Cutting Edge: Neutrophil Granulocyte Serves as a Vector for Leishmania Entry into Macrophages, The Journal of Immunology, vol.173, issue.11, pp.6521-6525, 2004.
DOI : 10.4049/jimmunol.173.11.6521

A. Guimaraes-costa, M. Nascimento, G. Froment, R. Soares, and F. Morgado, Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps, Proceedings of the National Academy of Sciences, vol.106, issue.16, pp.6748-6753, 2009.
DOI : 10.1073/pnas.0900226106

C. Gabriel, W. Mcmaster, D. Girard, and A. Descoteaux, Leishmania donovani Promastigotes Evade the Antimicrobial Activity of Neutrophil Extracellular Traps, The Journal of Immunology, vol.185, issue.7, pp.4319-4327, 2010.
DOI : 10.4049/jimmunol.1000893

URL : https://hal.archives-ouvertes.fr/pasteur-00819577

S. Gross, S. Gammon, B. Moss, D. Rauch, and J. Harding, Bioluminescence imaging of myeloperoxidase activity in vivo, Nature Medicine, vol.107, issue.4, pp.455-461, 2009.
DOI : 10.1038/nm.1886

D. Ordonez-rueda, F. Jonsson, D. Mancardi, W. Zhao, and A. Malzac, A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia, European Journal of Immunology, vol.119, issue.9, pp.2395-2408, 2012.
DOI : 10.1002/eji.201242589

R. Blomgran, L. Desvignes, V. Briken, and J. Ernst, Mycobacterium tuberculosis Inhibits Neutrophil Apoptosis, Leading to Delayed Activation of Naive CD4 T??cells, Cell Host & Microbe, vol.11, issue.1, p.22264515, 2012.
DOI : 10.1016/j.chom.2011.11.012

B. Jaeger, J. Donadieu, C. Cognet, C. Bernat, and D. Ordonez-rueda, Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis, The Journal of Experimental Medicine, vol.90, issue.3, pp.565-580, 2012.
DOI : 10.1016/j.immuni.2009.09.016

URL : https://hal.archives-ouvertes.fr/hal-00685480

A. Abdallah, D. Denkers, and E. , Neutrophils cast extracellular traps in response to protozoan parasites, Frontiers in Immunology, vol.3, p.23248631, 2012.
DOI : 10.3389/fimmu.2012.00382

A. Guimaraes-costa, T. Desouza-vieira, R. Paletta-silva, A. Freitas-mesquita, and J. Meyer-fernandes, 3'-Nucleotidase/Nuclease Activity Allows Leishmania Parasites To Escape Killing by Neutrophil Extracellular Traps, Infection and Immunity, vol.82, issue.4, pp.1732-1740
DOI : 10.1128/IAI.01232-13

N. Kimblin, N. Peters, A. Debrabant, N. Secundino, and J. Egen, Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies, Proceedings of the National Academy of Sciences, vol.105, issue.29, pp.10125-10130, 2008.
DOI : 10.1073/pnas.0802331105

Y. Belkaid, S. Kamhawi, G. Modi, J. Valenzuela, and N. Noben-trauth, Infection in the Mouse Ear Dermis, The Journal of Experimental Medicine, vol.70, issue.10, pp.1941-1953, 1998.
DOI : 10.1126/science.271.5251.987

R. Titus and J. Ribeiro, Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity, Science, vol.239, issue.4845, pp.1306-1308, 1988.
DOI : 10.1126/science.3344436

M. Rogers, T. Ilg, A. Nikolaev, M. Ferguson, and P. Bates, Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG, Nature, vol.217, issue.6998, pp.463-467, 2004.
DOI : 10.1016/0166-6851(90)90063-R

M. Rogers, P. Kropf, B. Choi, R. Dillon, and M. Podinovskaia, Proteophosophoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival, PLoS Pathogens, vol.173, issue.8, 2009.
DOI : 10.1371/journal.ppat.1000555.s008

M. Rogers, K. Corware, I. Muller, and P. Bates, Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues, Microbes and Infection, vol.12, issue.11, pp.875-879, 2010.
DOI : 10.1016/j.micinf.2010.05.014

A. Chagas, F. Oliveira, A. Debrabant, J. Valenzuela, and J. Ribeiro, Lundep, a Sand Fly Salivary Endonuclease Increases Leishmania Parasite Survival in Neutrophils and Inhibits XIIa Contact Activation in Human Plasma, PLoS Pathogens, vol.97, issue.1, p.24516388, 2014.
DOI : 10.1371/journal.ppat.1003923.s005

J. Mottram, G. Coombs, and A. J. , Cysteine peptidases as virulence factors of Leishmania, Current Opinion in Microbiology, vol.7, issue.4, pp.375-381, 2004.
DOI : 10.1016/j.mib.2004.06.010

L. Buxbaum, D. H. Coombs, G. , A. J. Mottram, and J. , Cysteine Protease B of Leishmania mexicana Inhibits Host Th1 Responses and Protective Immunity, The Journal of Immunology, vol.171, issue.7, pp.3711-3717, 2003.
DOI : 10.4049/jimmunol.171.7.3711

P. Belloso, S. , O. Saloma, P. Benitez, I. Soldevila et al., Entamoeba histolytica cysteine protease 2 (EhCP2) modulates leucocyte migration by proteolytic cleavage of chemokines, Parasite Immunology, vol.96, issue.6776, pp.237-241, 2004.
DOI : 10.1136/gut.52.9.1257

J. Cotton, A. Bhargava, J. Ferraz, R. Yates, and P. Beck, Giardia duodenalis Cathepsin B Proteases Degrade Intestinal Epithelial Interleukin-8 and Attenuate Interleukin-8-Induced Neutrophil Chemotaxis, Infection and Immunity, vol.82, issue.7, pp.2772-2787, 2014.
DOI : 10.1128/IAI.01771-14

M. Charmoy, R. Megnekou, C. Allenbach, C. Zweifel, and C. Perez, Leishmania major induces distinct neutrophil phenotypes in mice that are resistant or susceptible to infection, Journal of Leukocyte Biology, vol.82, issue.2, pp.288-299, 2007.
DOI : 10.1189/jlb.0706440

M. Charmoy, S. Brunner-agten, D. Aebischer, F. Auderset, and P. Launois, Neutrophil-Derived CCL3 Is Essential for the Rapid Recruitment of Dendritic Cells to the Site of Leishmania major Inoculation in Resistant Mice, PLoS Pathogens, vol.34, issue.2, p.20140197, 2010.
DOI : 10.1371/journal.ppat.1000755.s002

F. Ribeiro-gomes, A. Otero, N. Gomes, M. Moniz-de-souza, and L. Cysne-finkelstein, Macrophage Interactions with Neutrophils Regulate Leishmania major Infection, The Journal of Immunology, vol.172, issue.7, pp.4454-4462, 2004.
DOI : 10.4049/jimmunol.172.7.4454

L. Sousa, M. Carneiro, M. Resende, L. Martins, D. Santos et al., infection in BALB/c mice, Parasite Immunology, vol.174, issue.1, pp.13-31, 2014.
DOI : 10.1111/pim.12078

P. Webster, J. Ij, L. Chicoine, and E. Fikrig, The agent of Human Granulocytic Ehrlichiosis resides in an endosomal compartment., Journal of Clinical Investigation, vol.101, issue.9, pp.1932-1941, 1998.
DOI : 10.1172/JCI1544

G. Liu, A. Essex, J. Buchanan, V. Datta, and H. Hoffman, golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity, The Journal of Experimental Medicine, vol.60, issue.2, pp.209-215, 2005.
DOI : 10.1016/S0140-6736(00)04403-2

E. Eruslanov, I. Lyadova, T. Kondratieva, K. Majorov, and I. Scheglov, Neutrophil Responses to Mycobacterium tuberculosis Infection in Genetically Susceptible and Resistant Mice, Infection and Immunity, vol.73, issue.3, pp.1744-1753, 2005.
DOI : 10.1128/IAI.73.3.1744-1753.2005

E. Barquero-calvo, A. Martirosyan, D. Ordonez-rueda, V. Arce-gorvel, and A. Alfaro-alarcon, Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus, PLoS Pathogens, vol.142, issue.Pt 4, p.23458832, 2013.
DOI : 10.1371/journal.ppat.1003167.s009

T. Laskay, G. Van-zandbergen, and W. Solbach, Neutrophil granulocytes ??? Trojan horses for Leishmania major and other intracellular microbes?, Trends in Microbiology, vol.11, issue.5, pp.210-214, 2003.
DOI : 10.1016/S0966-842X(03)00075-1

A. Mantovani, M. Cassatella, C. Costantini, and S. Jaillon, Neutrophils in the activation and regulation of innate and adaptive immunity, Nature Reviews Immunology, vol.16, issue.8, pp.519-531, 2011.
DOI : 10.1038/nri3024

P. Scapini and M. Cassatella, Social networking of human neutrophils within the immune system, Blood, vol.124, issue.5, pp.710-719, 2014.
DOI : 10.1182/blood-2014-03-453217

E. Aga, D. Katschinski, G. Van-zandbergen, H. Laufs, and B. Hansen, Inhibition of the Spontaneous Apoptosis of Neutrophil Granulocytes by the Intracellular Parasite Leishmania major, The Journal of Immunology, vol.169, issue.2, pp.898-905, 2002.
DOI : 10.4049/jimmunol.169.2.898

A. Sarkar, E. Aga, U. Bussmeyer, A. Bhattacharyya, and S. Moller, Infection of neutrophil granulocytes with Leishmania major activates ERK 1/2 and modulates multiple apoptotic pathways to inhibit apoptosis, Medical Microbiology and Immunology, vol.20, issue.492???498, pp.25-35, 2013.
DOI : 10.1007/s00430-012-0246-1

M. Charmoy, F. Auderset, C. Allenbach, and F. Tacchini-cottier, The prominent role of neutrophils during the initial phase of infection by Leishmania parasites, J Biomed Biotechnol, pp.719361-719371, 2010.

S. Schuster, B. Hurrell, and F. Tacchini-cottier, Crosstalk between neutrophils and dendritic cells: a context-dependent process, Journal of Leukocyte Biology, vol.94, issue.4, pp.671-675, 2013.
DOI : 10.1189/jlb.1012540

M. Teixeira, C. Teixeira, B. Andrade, M. Barral-netto, and A. Barral, Chemokines in host???parasiteinteractions in leishmaniasis, Trends in Parasitology, vol.22, issue.1, pp.32-40, 2006.
DOI : 10.1016/j.pt.2005.11.010

B. Leon, M. Lopez-bravo, and C. Ardavin, Monocyte-Derived Dendritic Cells Formed at the Infection Site Control the Induction of Protective T Helper 1 Responses against Leishmania, Immunity, vol.26, issue.4, pp.519-531, 2007.
DOI : 10.1016/j.immuni.2007.01.017

U. Ritter and H. Moll, Monocyte chemotactic protein-1 stimulates the killing of Leishmania major by human monocytes, acts synergistically with IFN-?? and is antagonized by IL-4, European Journal of Immunology, vol.184, issue.11, pp.3111-3120, 2000.
DOI : 10.1002/1521-4141(200011)30:11<3111::AID-IMMU3111>3.0.CO;2-O

V. Abadie, E. Badell, P. Douillard, D. Ensergueix, and P. Leenen, Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes, Blood, vol.106, issue.5, pp.1843-1850, 2005.
DOI : 10.1182/blood-2005-03-1281

URL : https://hal.archives-ouvertes.fr/pasteur-00207998

T. Chtanova, M. Schaeffer, S. Han, G. Van-dooren, and M. Nollmann, Dynamics of Neutrophil Migration in Lymph Nodes during Infection, Immunity, vol.29, issue.3, pp.487-496, 2008.
DOI : 10.1016/j.immuni.2008.07.012

B. Maletto, A. Ropolo, D. Alignani, M. Liscovsky, and R. Ranocchia, Presence of neutrophil-bearing antigen in lymphoid organs of immune mice, Blood, vol.108, issue.9, pp.3094-3102, 2006.
DOI : 10.1182/blood-2006-04-016659

C. Yang, B. Strong, M. Miller, and E. Unanue, Neutrophils Influence the Level of Antigen Presentation during the Immune Response to Protein Antigens in Adjuvants, The Journal of Immunology, vol.185, issue.5, pp.2927-2934, 2010.
DOI : 10.4049/jimmunol.1001289

C. Yang and E. Unanue, -mediated process, The Journal of Experimental Medicine, vol.79, issue.2, pp.375-387, 2013.
DOI : 10.1016/j.immuni.2009.09.016

URL : https://hal.archives-ouvertes.fr/hal-01258459

N. Faust, F. Varas, L. Kelly, S. Heck, and T. Graf, Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages, Blood, vol.96, pp.719-726, 2000.

R. Lindquist, G. Shakhar, D. Dudziak, H. Wardemann, and T. Eisenreich, Visualizing dendritic cell networks in vivo, Nature Immunology, vol.7, issue.12, pp.1243-1250, 2004.
DOI : 10.1186/1472-6750-2-11

S. Schuster, M. Hartley, F. Tacchini-cottier, and C. Ronet, A scoring method to standardize lesion monitoring following intra-dermal infection of Leishmania parasites in the murine ear, Frontiers in Cellular and Infection Microbiology, vol.73, p.24904841, 2014.
DOI : 10.1093/intimm/dxh313

T. Weinkopff, C. De-oliveira, A. De-carvalho, Y. Hauyon-la-torre, and A. Muniz, Repeated Exposure to Lutzomyia intermedia Sand Fly Saliva Induces Local Expression of Interferon-Inducible Genes Both at the Site of Injection in Mice and in Human Blood, PLoS Neglected Tropical Diseases, vol.2, issue.Pt 1, p.24421912, 2014.
DOI : 10.1371/journal.pntd.0002627.s003

A. Misslitz, J. Mottram, P. Overath, and T. Aebischer, Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes, Molecular and Biochemical Parasitology, vol.107, issue.2, pp.251-261, 2000.
DOI : 10.1016/S0166-6851(00)00195-X

J. Daley, A. Thomay, M. Connolly, J. Reichner, and J. Albina, Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice, Journal of Leukocyte Biology, vol.83, issue.1, pp.64-70, 2008.
DOI : 10.1189/jlb.0407247

O. Filipe-santos, P. Pescher, B. Breart, C. Lippuner, and T. Aebischer, A Dynamic Map of Antigen Recognition by CD4 T Cells at the Site of Leishmania major Infection, Cell Host & Microbe, vol.6, issue.1, pp.23-33, 2009.
DOI : 10.1016/j.chom.2009.04.014

URL : https://hal.archives-ouvertes.fr/hal-00419292

S. Yousefi, J. Gold, N. Andina, J. Lee, and A. Kelly, Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense, Nature Medicine, vol.205, issue.9, pp.949-953, 2008.
DOI : 10.1038/nm.1855

S. Yousefi, C. Mihalache, E. Kozlowski, I. Schmid, and H. Simon, Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death and Differentiation, vol.470, issue.11, pp.1438-1444, 2009.
DOI : 10.1038/ncb1482

R. Dworski, H. Simon, A. Hoskins, and S. Yousefi, Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways, Journal of Allergy and Clinical Immunology, vol.127, issue.5, pp.1260-1266, 2011.
DOI : 10.1016/j.jaci.2010.12.1103