P. Dasaraju and C. Liu, Infections of the Respiratory System, Medical Microbiology, 1996.

S. Yamazaki, A. Maruyama, K. Okada, M. Matsumoto, and A. Morita, Dendritic Cells from Oral Cavity Induce Foxp3+ Regulatory T Cells upon Antigen Stimulation, PLoS ONE, vol.42, issue.12, p.23272135, 2012.
DOI : 10.1371/journal.pone.0051665.s002

P. Hamrah and M. Dana, Corneal Antigen-Presenting Cells, Chem Immunol Allergy, vol.92, pp.58-70, 2007.
DOI : 10.1159/000099254

S. Kida, A. Pantazis, and R. Weller, CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance, Neuropathology and Applied Neurobiology, vol.170, issue.6, pp.480-488, 1993.
DOI : 10.1007/BF00296784

D. Wolvers, C. Coenen-de-roo, R. Mebius, M. Van-der-cammen, and F. Tirion, Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39, J Immunol, vol.162, pp.1994-1998, 1999.

T. Spahn, H. Weiner, P. Rennert, N. Lugering, and A. Fontana, Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches, European Journal of Immunology, vol.184, issue.4, pp.1109-1113, 2002.
DOI : 10.1002/1521-4141(200204)32:4<1109::AID-IMMU1109>3.0.CO;2-K

T. Worbs, U. Bode, S. Yan, M. Hoffmann, and G. Hintzen, Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells, The Journal of Experimental Medicine, vol.56, issue.3, pp.519-527, 2006.
DOI : 10.1126/science.1091334

J. Van-helvoort, J. Samsom, D. Chantry, W. Jansen, and I. Schadee-eestermans, Preferential expression of IgG2b in nose draining cervical lymph nodes and its putative role in mucosal tolerance induction, Allergy, vol.89, issue.11, pp.1211-1218, 2004.
DOI : 10.1084/jem.191.5.899

M. Corbel, Brucellosis in Humans and Animals, 2006.

J. Ariza, M. Bosilkovski, A. Cascio, J. Colmenero, and M. Corbel, Perspectives for the Treatment of Brucellosis in the 21st Century: The Ioannina Recommendations, PLoS Medicine, vol.22, issue.12, pp.317-18162038, 2007.
DOI : 10.1371/journal.pmed.0040317.t002

M. Seleem, S. Boyle, and N. Sriranganathan, Brucellosis: A re-emerging zoonosis, Veterinary Microbiology, vol.140, issue.3-4, pp.392-398, 2010.
DOI : 10.1016/j.vetmic.2009.06.021

M. Grillo, J. Blasco, J. Gorvel, I. Moriyon, and E. Moreno, What have we learned from brucellosis in the mouse model?, Veterinary Research, vol.43, issue.1, p.22500859, 2012.
DOI : 10.1146/annurev.es.24.110193.001003

C. Tsou, W. Peters, Y. Si, S. Slaymaker, and A. Aslanian, Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites, Journal of Clinical Investigation, vol.117, issue.4, pp.902-909, 2007.
DOI : 10.1172/JCI29919

R. Forster, A. Davalos-misslitz, and A. Rot, CCR7 and its ligands: balancing immunity and tolerance, Nature Reviews Immunology, vol.197, issue.5, pp.362-371, 2008.
DOI : 10.1038/nri2297

D. Hume, Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity, Journal of Leukocyte Biology, vol.89, issue.4, pp.525-538, 2011.
DOI : 10.1189/jlb.0810472

R. Mccabe, R. Brooks, R. Dorfman, and J. Remington, Clinical Spectrum in 107 Cases of Toxoplasmic Lymphadenopathy, Clinical Infectious Diseases, vol.9, issue.4, pp.754-774, 1987.
DOI : 10.1093/clinids/9.4.754

M. Golden and H. Vikram, Extrapulmonary tuberculosis: an overview, Am Fam Physician, vol.72, pp.1761-1768, 2005.

S. Neelakantan, P. Nair, R. Emmanuel, and K. Agrawal, Diversities in presentations of extrapulmonary tuberculosis, Case Reports, vol.2013, issue.feb28 1, 2013.
DOI : 10.1136/bcr-2013-008597

J. Gosche and L. Vick, Acute, subacute, and chronic cervical lymphadenitis in children, Seminars in Pediatric Surgery, vol.15, issue.2, pp.99-106, 2006.
DOI : 10.1053/j.sempedsurg.2006.02.007

W. Spink, The Nature of Brucellosis, 1956.

A. Mousa, K. Elhag, M. Khogali, and A. Marafie, The Nature of Human Brucellosis in Kuwait: Study of 379 Cases, Clinical Infectious Diseases, vol.10, issue.1, pp.211-217, 1988.
DOI : 10.1093/clinids/10.1.211

A. Gur, M. Geyik, B. Dikici, K. Nas, and R. Cevik, Complications of Brucellosis in Different Age Groups: A Study of 283 Cases in Southeastern Anatolia of Turkey, Yonsei Medical Journal, vol.44, issue.1, pp.33-44, 2003.
DOI : 10.3349/ymj.2003.44.1.33

A. Yinnon, G. Morali, A. Goren, B. Rudensky, and M. Isacsohn, Effect of age and duration of disease on the clinical manifestations of brucellosis. A study of 73 consecutive patients in Israel, Israel journal of medical sciences, vol.29, pp.11-16, 1993.

A. Lulu, G. Araj, M. Khateeb, M. Mustafa, and A. Yusuf, Human brucellosis in Kuwait: a prospective study of 400 cases, Q J Med, vol.66, pp.39-54, 1988.

J. Colmenero, J. Reguera, F. Martos, D. Sanchez-de-mora, and M. Delgado, Complications Associated with Brucella melitensis Infection: A Study of 530 Cases, Medicine, vol.75, issue.4, pp.195-211, 1996.
DOI : 10.1097/00005792-199607000-00003

B. Dokuzoguz, O. Ergonul, N. Baykam, H. Esener, and S. Kilic, Characteristics of B. melitensis versus B. abortus bacteraemias, Journal of Infection, vol.50, issue.1, pp.41-45, 2005.
DOI : 10.1016/j.jinf.2004.02.005

S. Troy, L. Rickman, and C. Davis, Brucellosis in San Diego, Medicine, vol.84, issue.3, pp.174-187, 2005.
DOI : 10.1097/01.md.0000165659.20988.25

M. Plommet, Studies on Experimental Brucellosis in Cows in France, 1977.

M. Plommet and A. Plommet, Vaccination against bovine brucellosis with a low dose of strain 19 administered by the conjunctival route, Ann Rech Vet, vol.7, pp.1-8, 1976.
URL : https://hal.archives-ouvertes.fr/hal-00901107

N. Mccullough, Microbial and host factors in the pathogenesis of brucellosis. Infectious Agents and Host Reactions, pp.324-345, 1970.

W. Kastenmuller, P. Torabi-parizi, N. Subramanian, T. Lammermann, and R. Germain, A Spatially-Organized Multicellular Innate Immune Response in Lymph Nodes Limits Systemic Pathogen Spread, Cell, vol.150, issue.6, pp.1235-1248, 2012.
DOI : 10.1016/j.cell.2012.07.021

D. Monack, D. Bouley, and S. Falkow, Mice and Can Be Reactivated by IFN?? Neutralization, The Journal of Experimental Medicine, vol.67, issue.2, pp.231-241, 2004.
DOI : 10.1016/S0002-9343(00)00638-0

E. Murphy, J. Sathiyaseelan, M. Parent, B. Zou, and C. Baldwin, Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice, Immunology, vol.161, issue.4, pp.511-518, 2001.
DOI : 10.1016/S0928-8244(96)00083-1

I. Corthesy-theulaz, S. Hopkins, D. Bachmann, P. Saldinger, and N. Porta, Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium phoPc expressing urease A and B subunits, Infect Immun, vol.66, pp.581-586, 1998.

M. Bonneau, M. Epardaud, F. Payot, V. Niborski, and M. Thoulouze, Migratory monocytes and granulocytes are major lymphatic carriers of Salmonella from tissue to draining lymph node, Journal of Leukocyte Biology, vol.79, issue.2, pp.268-276, 2006.
DOI : 10.1189/jlb.0605288

M. Eze, L. Yuan, R. Crawford, C. Paranavitana, and T. Hadfield, Effects of Opsonization and Gamma Interferon on Growth of Brucella melitensis 16M in Mouse Peritoneal Macrophages In Vitro, Infection and Immunity, vol.68, issue.1, pp.257-263, 2000.
DOI : 10.1128/IAI.68.1.257-263.2000

X. Jiang, B. Leonard, R. Benson, and C. Baldwin, Macrophage Control of Brucella abortus: Role of Reactive Oxygen Intermediates and Nitric Oxide, Cellular Immunology, vol.151, issue.2, pp.309-319, 1993.
DOI : 10.1006/cimm.1993.1241

S. Jones and A. Winter, Survival of virulent and attenuated strains of Brucella abortus in normal and gamma interferon-activated murine peritoneal macrophages, Infect Immun, vol.60, pp.3011-3014, 1992.

L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nature Reviews Immunology, vol.288, pp.352-366, 2012.
DOI : 10.1038/nri3211

A. Zumla and D. James, Granulomatous Infections: Etiology and Classification, Clinical Infectious Diseases, vol.23, issue.1, pp.146-158, 1996.
DOI : 10.1093/clinids/23.1.146

URL : http://cid.oxfordjournals.org/cgi/content/short/23/1/146

R. Copin, M. Vitry, H. Mambres, D. Machelart, A. et al., In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice, PLoS Pathogens, vol.5, issue.3, p.22479178, 2012.
DOI : 10.1371/journal.ppat.1002575.s014

L. Eskra, A. Mathison, and G. Splitter, Microarray Analysis of mRNA Levels from RAW264.7 Macrophages Infected with Brucella abortus, Infection and Immunity, vol.71, issue.3, pp.1125-1133, 2003.
DOI : 10.1128/IAI.71.3.1125-1133.2003

A. Gross, S. Spiesser, A. Terraza, B. Rouot, and E. Caron, Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages, Infect Immun, vol.66, pp.1309-1316, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00193957

Y. Zhan, Z. Liu, and C. Cheers, Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms, Infect Immun, vol.64, pp.2782-2786, 1996.

E. Caron, T. Peyrard, S. Kohler, S. Cabane, and J. Liautard, Live Brucella spp. fail to induce tumor necrosis factor alpha excretion upon infection of U937-derived phagocytes, Infect Immun, vol.62, pp.5267-5274, 1994.

E. Barquero-calvo, E. Chaves-olarte, D. Weiss, C. Guzman-verri, and C. Chacon-diaz, Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection, PLoS ONE, vol.178, issue.178, pp.631-17637846, 2007.
DOI : 10.1371/journal.pone.0000631.t001

M. Netea, B. Kullberg, I. Verschueren, and J. Van-der-meer, Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1??, European Journal of Immunology, vol.97, issue.10, pp.3057-3060, 2000.
DOI : 10.1002/1521-4141(200010)30:10<3057::AID-IMMU3057>3.0.CO;2-P

L. Fernandez-lago, A. Orduna, and N. Vizcaino, Reduced interleukin-18 secretion in Brucella abortus 2308-infected murine peritoneal macrophages and in spleen cells obtained from B. abortus 2308-infected mice, Journal of Medical Microbiology, vol.54, issue.6, pp.527-531, 2005.
DOI : 10.1099/jmm.0.45936-0

P. Murray and T. Wynn, Protective and pathogenic functions of macrophage subsets, Nature Reviews Immunology, vol.332, issue.11, pp.723-737, 2011.
DOI : 10.1038/nri3073

T. Paixao, C. Roux, A. Hartigh, S. Sankaran-walters, and S. Dandekar, Establishment of Systemic Brucella melitensis Infection through the Digestive Tract Requires Urease, the Type IV Secretion System, and Lipopolysaccharide O Antigen, Infection and Immunity, vol.77, issue.10, pp.4197-4208, 2009.
DOI : 10.1128/IAI.00417-09

J. Gorvel, E. Moreno, and I. Moriyon, Is Brucella an enteric pathogen?, Nature Reviews Microbiology, vol.6, issue.3, 2009.
DOI : 10.1038/nrmicro2012-c1

URL : https://hal.archives-ouvertes.fr/hal-00407895

J. Lee, D. Kim, S. Park, J. Lim, and D. Kim, Redundant effects of ketamine on the pathogenesis and severity of Brucella abortus infection. Comparative immunology, microbiology and infectious diseases, 2012.

C. Nunes-alves, C. Nobrega, S. Behar, and M. Correia-neves, Tolerance has its limits: how the thymus copes with infection, Trends in Immunology, vol.34, issue.10, pp.502-510, 2013.
DOI : 10.1016/j.it.2013.06.004

C. Nobrega, P. Cardona, S. Roque, O. Pinto-do, and R. Appelberg, The thymus as a target for mycobacterial infections, Microbes and Infection, vol.9, issue.14-15, pp.1521-1529, 2007.
DOI : 10.1016/j.micinf.2007.08.006

S. Tessaro and L. Forbes, EXPERIMENTAL BRUCELLA ABORTUS INFECTION IN WOLVES, Journal of Wildlife Diseases, vol.40, issue.1, pp.60-65, 2004.
DOI : 10.7589/0090-3558-40.1.60

C. Nobrega, S. Roque, C. Nunes-alves, A. Coelho, and I. Medeiros, Dissemination of Mycobacteria to the Thymus Renders Newly Generated T Cells Tolerant to the Invading Pathogen, The Journal of Immunology, vol.184, issue.1, pp.351-358, 2010.
DOI : 10.4049/jimmunol.0902152

A. Fletcher, D. Malhotra, S. Acton, V. Lukacs-kornek, and A. Bellemare-pelletier, Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells, Frontiers in Immunology, vol.2, p.22566825, 2011.
DOI : 10.3389/fimmu.2011.00035

S. Hammerschmidt, M. Ahrendt, U. Bode, B. Wahl, and E. Kremmer, Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo, The Journal of Experimental Medicine, vol.162, issue.11, pp.2483-2490, 2008.
DOI : 10.4049/jimmunol.175.5.2960

E. Fugier, S. Salcedo, C. De-chastellier, M. Pophillat, and A. Muller, The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication, PLoS Pathogens, vol.147, issue.12, 2009.
DOI : 10.1371/journal.ppat.1000487.s004

URL : https://hal.archives-ouvertes.fr/hal-00431863

J. Celli, C. De-chastellier, D. Franchini, J. Pizarro-cerda, and E. Moreno, Evades Macrophage Killing via VirB-dependent Sustained Interactions with the Endoplasmic Reticulum, The Journal of Experimental Medicine, vol.114, issue.4, pp.545-556, 2003.
DOI : 10.1038/35052017

C. Wray and W. Sojka, Experimental Salmonella typhimurium infection in calves, Research in veterinary science, vol.25, pp.139-143, 1978.

L. Boring, J. Gosling, S. Chensue, S. Kunkel, R. Farese et al., Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice., Journal of Clinical Investigation, vol.100, issue.10, pp.2552-2561, 1997.
DOI : 10.1172/JCI119798

R. Forster, A. Schubel, D. Breitfeld, E. Kremmer, and I. Renner-muller, CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenvironments in Secondary Lymphoid Organs, Cell, vol.99, issue.1, pp.23-33, 1999.
DOI : 10.1016/S0092-8674(00)80059-8

A. Kissenpfennig, S. Henri, B. Dubois, C. Laplace-builhe, and P. Perrin, Dynamics and Function of Langerhans Cells In Vivo, Immunity, vol.22, issue.5, pp.643-654, 2005.
DOI : 10.1016/j.immuni.2005.04.004

URL : https://hal.archives-ouvertes.fr/hal-00165695

S. Jung, D. Unutmaz, P. Wong, G. Sano, and K. De-los-santos, In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens, Immunity, vol.17, issue.2, pp.211-220, 2002.
DOI : 10.1016/S1074-7613(02)00365-5

W. Van-den-broeck, A. Derore, and P. Simoens, Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice, Journal of Immunological Methods, vol.312, issue.1-2, pp.12-19, 2006.
DOI : 10.1016/j.jim.2006.01.022