A. Teske, C. Wawer, G. Muyzer, and N. Ramsing, Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments, Appl Environ Microbiol, vol.62, pp.1405-8919802, 1996.

C. Santegoeds, T. Ferdelman, G. Muyzer, and D. De-beer, Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms, Appl Environ Microbiol, vol.64, pp.3731-3739, 1998.

S. Okabe, T. Itoh, H. Satoh, and Y. Watanabe, Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms, Appl Environ Microbiol, vol.65, pp.5107-5116, 1999.

D. Canfield, D. Marais, and D. , Aerobic sulfate reduction in microbial mats, Science, vol.251, issue.5000, pp.1471-1473, 1991.
DOI : 10.1126/science.11538266

D. Krekeler, P. Sigalevich, A. Teske, H. Cypionka, and Y. Cohen, A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov., Archives of Microbiology, vol.167, issue.6, pp.369-375, 1997.
DOI : 10.1007/s002030050457

D. Minz, S. Fishbain, S. Green, G. Muyzer, Y. Cohen et al., Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia, Appl Environ Microbiol, vol.65, pp.4659-4665, 1999.

P. Visscher, R. Prins, and H. Gemerden, Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat, FEMS Microbiology Letters, vol.86, issue.4, pp.283-294, 1992.
DOI : 10.1111/j.1574-6968.1992.tb04820.x

J. Risatti, W. Capnan, and D. Stahl, Community structure of a microbial mat: the phylogenetic dimension., Proceedings of the National Academy of Sciences, vol.91, issue.21, pp.10173-10177, 1994.
DOI : 10.1073/pnas.91.21.10173

B. B. Jorgensen and F. Bak, Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment, Appl Environ Microbiol, vol.57, pp.847-856, 1991.

V. Blaabjerg and K. Finster, Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina, Aquatic Microbial Ecology, vol.15, pp.311-314, 1998.
DOI : 10.3354/ame015311

L. Nielsen, K. Finster, D. Welsh, A. Donelly, R. Herbert et al., Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows, Environmental Microbiology, vol.51, issue.1, pp.63-71, 2001.
DOI : 10.1016/0304-3770(79)90058-5

J. Kuo, Root anatomy and rhizosphere ultrastructure in tropical seagrass, Austral J Mar Fresh Res, vol.44, pp.75-84, 1993.

K. Küsel, H. C. Pinkart, H. L. Drake, and R. Devereux, Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii, Appl Environ Microbiol, vol.65, pp.5117-5123, 1999.

P. Sigalevich, M. Baev, A. Teske, and Y. Cohen, Sulfate Reduction and Possible Aerobic Metabolism of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in a Chemostat Coculture with Marinobacter sp. Strain MB under Exposure to Increasing Oxygen Concentrations, Applied and Environmental Microbiology, vol.66, issue.11, pp.5013-5018, 2000.
DOI : 10.1128/AEM.66.11.5013-5018.2000

C. Fründ and Y. Cohen, Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial. Mats, Appl Environ Microbiol, vol.58, pp.70-77, 1992.

J. Postgate, The sulfate-reducing bacteria, 1984.

M. Fournier, C. Aubert, Z. Dermoun, M. Durand, D. Moinier et al., Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis, Biochimie, vol.88, issue.1, pp.85-94, 2006.
DOI : 10.1016/j.biochi.2005.06.012

URL : https://hal.archives-ouvertes.fr/hal-00475677

A. Mukhopadhyay, A. Redding, M. Joachimiak, A. Arkin, S. Borglin et al., Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough, Journal of Bacteriology, vol.189, issue.16, pp.5996-6010, 2007.
DOI : 10.1128/JB.00368-07

P. Pereira, Q. He, F. Valente, A. Xavier, J. Zhou et al., Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis, Antonie van Leeuwenhoek, vol.6, issue.4, pp.347-362, 2008.
DOI : 10.1007/s10482-007-9212-0

W. Zhang, D. Culley, J. Scholten, M. Hogan, L. Vitiritti et al., Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors, Antonie van Leeuwenhoek, vol.47, issue.2, pp.221-237, 2006.
DOI : 10.1007/s10482-005-9024-z

M. Figueiredo, S. Lobo, J. Carita, L. Nobre, and L. Saraiva, Bacterioferritin protects the anaerobe Desulfovibrio vulgaris Hildenborough against oxygen, Anaerobe, vol.18, issue.4, pp.454-458, 2012.
DOI : 10.1016/j.anaerobe.2012.06.001

C. Dijk-van, A. Berkel-arts-van, and C. Veeger, strain Hildenborough and its oxygen stability, FEBS Letters, vol.1, issue.2, pp.340-344, 1983.
DOI : 10.1016/0014-5793(83)80525-0

A. Stams and T. Hansen, Oxygen-labile ?(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans, FEMS Microbiology Letters, vol.13, issue.4, pp.389-394, 1982.
DOI : 10.1016/0378-1097(82)90197-5

N. Vita, E. Hatchikian, M. Nouailler, A. Dolla, and L. Pieulle, Bacteria, Biochemistry, vol.47, issue.3, pp.957-964, 2008.
DOI : 10.1021/bi7014713

URL : https://hal.archives-ouvertes.fr/hal-00473795

H. Sass, M. Berchtold, J. Branke, H. König, H. Cypionka et al., Psychrotolerant Sulfate-reducing Bacteria from an Oxic Freshwater Sediment Description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov., Systematic and Applied Microbiology, vol.21, issue.2, pp.212-219, 1998.
DOI : 10.1016/S0723-2020(98)80025-8

F. Ramel, A. Amrani, L. Pieulle, O. Lamrabet, G. Voordouw et al., Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation, Microbiology, vol.159, issue.Pt_12, pp.2663-2673, 2013.
DOI : 10.1099/mic.0.071282-0

C. Marschall, P. Frenzel, and H. Cypionka, Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria, Archives of Microbiology, vol.131, issue.2, pp.168-173, 1993.
DOI : 10.1007/BF00250278

H. Cypionka, F. Widdel, and N. Pfennig, Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients, FEMS Microbiology Letters, vol.31, issue.1, pp.39-45, 1985.
DOI : 10.1111/j.1574-6968.1985.tb01129.x

J. A. Hardy and W. Hamilton, The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters, Current Microbiology, vol.16, issue.5, pp.259-262, 1981.
DOI : 10.1007/BF01566873

D. Krekeler, A. Teske, and H. Cypionka, Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat, FEMS Microbiology Ecology, vol.25, issue.2, pp.89-96, 1998.
DOI : 10.1111/j.1574-6941.1998.tb00462.x

H. Saas, H. Cypionka, and H. Babenzien, Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin, FEMS Microbiology Ecology, vol.22, issue.3, pp.245-255, 1997.
DOI : 10.1111/j.1574-6941.1997.tb00377.x

M. Johnson, I. Zhulin, M. Gapuzan, and B. Taylor, Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough., Journal of Bacteriology, vol.179, issue.17, pp.5598-5601, 1997.
DOI : 10.1128/jb.179.17.5598-5601.1997

A. Eschemann, M. Kühl, and H. Cypionka, Aerotaxis in Desulfovibrio, Environmental Microbiology, vol.64, issue.6, pp.489-494, 1999.
DOI : 10.1016/0378-1097(92)90792-M

URL : https://opus.lib.uts.edu.au/bitstream/10453/14823/1/2009005576OK.pdf

P. Sigalevich and Y. Cohen, Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat, Applied and Environmental Microbiology, vol.66, issue.11, pp.5019-5023, 2000.
DOI : 10.1128/AEM.66.11.5019-5023.2000

W. Dilling and H. Cypionka, Aerobic respiration in sulphate-reducing bacteria, FEMS Microbiol Lett, vol.71, pp.123-128, 1990.

S. Dannenberg, M. Kroder, W. Dilling, and H. Cypionka, Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria, Archives of Microbiology, vol.131, issue.2, pp.93-99, 1992.
DOI : 10.1007/BF00245211

H. Cypionka, Species, Annual Review of Microbiology, vol.54, issue.1, pp.827-848, 2000.
DOI : 10.1146/annurev.micro.54.1.827

T. Kuhnigk, J. Branke, D. Krekeler, H. Cypionka, and H. König, A Feasible Role of Sulfate-Reducing Bacteria in the Termite Gut, Systematic and Applied Microbiology, vol.19, issue.2, pp.139-149, 1996.
DOI : 10.1016/S0723-2020(96)80039-7

A. Baumgarten, I. Redenius, J. Kranczoch, and H. Cypionka, Periplasmic oxygen reduction by Desulfovibrio species, Archives of Microbiology, vol.176, issue.4, pp.306-309, 2001.
DOI : 10.1007/s002030100329

M. Fournier, Z. Dermoun, M. Durand, and A. Dolla, A New Function of the Desulfovibrio vulgaris Hildenborough [Fe] Hydrogenase in the Protection against Oxidative Stress, Journal of Biological Chemistry, vol.279, issue.3, pp.1787-1793, 2004.
DOI : 10.1074/jbc.M307965200

L. Chen, M. Liu, J. Legall, P. Fareleira, H. Santos et al., Rubredoxin oxidase, a new flavo-hemoprotein , is the site of oxygen reduction to water by the "strict anaerobe" Desulfovibrio gigas, Biochem Biophys Res Commun, vol.28, issue.193, pp.100-105, 1993.

C. Frazão, G. Silva, C. Gomes, P. Matias, R. Coelho et al., Structure of a dioxygen reduction enzyme from Desulfovibrio gigas, Nat Struct Biol, vol.7, pp.1041-1045, 2000.

J. Wildschut, R. Lang, J. Voordouw, and G. Voordouw, Rubredoxin:Oxygen Oxidoreductase Enhances Survival of Desulfovibrio vulgaris Hildenborough under Microaerophilic Conditions, Journal of Bacteriology, vol.188, issue.17, pp.6253-6260, 2006.
DOI : 10.1128/JB.00425-06

M. Santana, Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments, Anaerobe, vol.14, issue.3, pp.145-156, 2008.
DOI : 10.1016/j.anaerobe.2008.03.001

R. Lemos, C. Gomes, M. Santana, J. Legall, A. Xavier et al., contains a membrane-bound oxygen-reducing respiratory chain, FEBS Letters, vol.136, issue.1, pp.40-43, 2001.
DOI : 10.1016/S0014-5793(01)02399-7

P. Machado, R. Félix, R. Rodrigues, S. Oliveira, and C. Rodrigues-pousada, Characterization and Expression Analysis of the Cytochrome bd Oxidase Operon from Desulfovibrio gigas, Current Microbiology, vol.40, issue.4, pp.274-281, 2006.
DOI : 10.1007/s00284-005-0165-0

O. Lamrabet, L. Pieulle, C. Aubert, F. Mouhamar, P. Stocker et al., Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases, Microbiology, vol.157, issue.9, pp.2720-2732, 2011.
DOI : 10.1099/mic.0.049171-0

URL : https://hal.archives-ouvertes.fr/hal-01460315

L. Pieulle, B. Guigliarelli, M. Asso, F. Dole, A. Bernadac et al., Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1250, issue.1, pp.49-59, 1995.
DOI : 10.1016/0167-4838(95)00029-T

L. Pieulle, P. Stocker, M. Vinay, M. Nouailler, N. Vita et al., Study of the Thiol/Disulfide Redox Systems of the Anaerobe Desulfovibrio vulgaris Points Out Pyruvate:Ferredoxin Oxidoreductase as a New Target for Thioredoxin 1, Journal of Biological Chemistry, vol.286, issue.10, pp.7812-7821, 2011.
DOI : 10.1074/jbc.M110.197988

URL : https://hal.archives-ouvertes.fr/hal-01460337

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

M. Yurkiw, J. Voordouw, and G. Voordouw, Hildenborough to survival under oxygen and nitrite stress, Environmental Microbiology, vol.12, issue.10, pp.2711-2725, 2012.
DOI : 10.1111/j.1462-2920.2012.02859.x

S. Jünemann, Cytochrome bd terminal oxidase1All amino acid numbering refers to the E. coli enzyme.1, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1321, issue.2, pp.107-127, 1997.
DOI : 10.1016/S0005-2728(97)00046-7

P. Brzezinski and R. Gennis, Cytochrome c oxidase: exciting progress and remaining mysteries, Journal of Bioenergetics and Biomembranes, vol.1557, issue.10, pp.521-531, 2008.
DOI : 10.1007/s10863-008-9181-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012550

G. Zhou, J. Yin, H. Chen, Y. Hua, L. Sun et al., Combined effect of loss of the caa3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments, The ISME Journal, vol.114, issue.9, pp.1752-1763, 2013.
DOI : 10.1371/journal.pone.0023701

V. Borisov, R. Gennis, J. Hemp, and M. Verkhovsky, The cytochrome bd respiratory oxygen reductases, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.11, pp.1398-1413, 2011.
DOI : 10.1016/j.bbabio.2011.06.016

L. Gall, J. Xavier, and A. , Anaerobes Response to Oxygen: The Sulfate-reducing Bacteria, Anaerobe, vol.2, issue.1, pp.1-9, 1996.
DOI : 10.1006/anae.1996.0001

J. Postgate, The sulfate reducing bacteria, 1979.

R. Poole and S. Hill, Respiratory protection of nitrogenase activity in Azotobacter vinelandii?roles of the terminal oxidases, Bioscience Reports, vol.17, issue.3, pp.303-317, 1997.
DOI : 10.1023/A:1027336712748