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Abstract. We investigate a two-dimensional metamaterial template 
constructed from different pixels through a conservation law of effective 
indices: If the product of refractive indices along the principal axes is 
invariant for different anisotropic materials in a two-dimensional space, the 
product of indices of the effective medium remains constant after mixing 
these materials. Such effective media of constant indices product can be 
implemented using metamaterial structures. The orientation of the 
metamaterial structure in a single pixel controls the direction of the 
principal axis of the effective medium. Different pixels are assembled into 
an array to obtain reconfigurable anisotropy of the effective medium. These 
considerations would be useful for constructing reconfigurable 
metamaterials and transformation media with area-preserving maps. 

©2015 Optical Society of America 

OCIS codes: (160.3918) Metamaterials; (260.2110) Electromagnetic optics; (310.6860) Thin 
films, optical properties. 
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1. Introduction 

Homogenization of composite materials is an important topic in optics for understanding 
wave propagation and is currently with a renewed interest due to the developments of 
metamaterials [1]. It provides us with a macroscopic description of a composite material and 
is therefore useful for predicting and modeling complex wave phenomena when different 
composite materials are used as building blocks. In the long wavelength limit for dielectric 
composites, Maxwell Garnett (MG) formula deals with spherical inclusions embedded in a 
host material. Bruggeman's model works well when the two constituents are intermingled 
with each other [2,3]. In fact, different effective medium formulas have to be used for 
calculating the effective material parameters in different situations [4–7]. There are also 
approaches focusing on more general aspects of homogenization. For example, the Bergman-
Milton theory can be used for deriving rigorous bounds for the effective material parameters 
consisting of two isotropic dielectric media with complex relative permittivities: Based on 
very general physical principles, these rigorous bounds confine the region of the physically 
admissible effective permittivities in the complex plane [8]. Two-scale convergence has been 
developed to obtain the effective material parameters which can capture all interaction effects 
between the inclusions [9,10]. The refined homogenization results for the Maxwell system 
[11,12] encompass the cases of small and large volume fraction and regular as well as 
irregular shapes of inclusions and can be applied in more general contexts [13,14]. We note 
that classical effective medium theories are often isotropic for both the constituting materials 
and the resultant effective medium due to random fluctuations. However, with the availability 
of metamaterials whose refractive indices and local anisotropy can be precisely controlled 
with varying profiles, the consideration of effective media with artificial anisotropy becomes 
increasingly important. 

In this paper, we first point out a mixing law for anisotropic effective medium theory in 
which the product of principal indices of an effective medium remains constant throughout 
the homogenization process with specific conditions. In this law, the constant property of 
mixture is independent of the filling ratio and is also independent of the shape of material 
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inclusions (established through two-scale convergence), which is guaranteed in the long 
wavelength limit. With the help of this law, we can extend the application of homogenization 
to a class of anisotropic effective media with constant indices product which can be 
potentially useful for designing reconfigurable two-dimensional metamaterials and 
transformation optical (TO) media associated with area-preserving mappings [15–17]. 

The paper is organized in the following way. Section 1 is the present introduction. In 
section 2, we introduce the conservation law about the indices product that we employ in this 
work as a way to construct metamaterial templates. In section 3, we numerically demonstrate 
the conservation law by considering an array of cylinders with anisotropic permittivities. In 
section 4, we propose a reconfigurable effective medium with constant indices product, which 
can be tuned by rotating a metamaterial atom. In section 5, we use the individually 
reconfigurable pixels developed in section 4 to construct higher order effective media (super 
lattice) of constant indices product using a bilayer structure and a checkerboard structure, as a 
route to a reconfigurable metamaterial template. Section 6 is the summary of this work. 

2. Index conservation for anisotropic effective media 

We begin by specifying an arbitrary profile of anisotropic permittivity tensor ( )ε r on the 

micro-scale, satisfying the usual assumption of homogenization theory (uniform and strictly 
positive upper and lower bounds for almost every position vector r in a periodic cell, what 
covers the case of piecewise constant periodic permittivity functions) [9–13]. It is well known 
that the homogenization problem amounts to solving a local problem in a periodic cell with a 
constant electric field 0E  applied to the system shown in Fig. 1. 

 

Fig. 1. The local annex problem obtained from the homogenization process in a 2D periodic 

structure with a square unit cell. Permittivity ( )ε r  denotes distribution of materials in the 

domain. Arrows 0Ε  represent the constant electric field applied to the background. Periodic 

boundary conditions are applied. 

The local problem obtained from the homogenization of periodic dielectric media (two-
scale convergence) [11–14] corresponds to solving the Laplace equation 

 ( ( ) ( )) 0,ε∇ ⋅ ⋅ =r E r  (1) 

with ( )E r  being the electric field such that 

 

( ) ( )
( ) ( )
( ) ( ) ( )

V

ε

= − ∇

= + ∇×

= ⋅

E r E r

D r D U r

D r r E r

 (2) 
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where ( )U r  and ( )V r are vector and scalar potentials, respectively. Equation (1) is solved 

subject to periodic boundary conditions on the square domain shown in Fig. 1. 0E  is the 

constant applied external electric field, which is also the (spatially) averaged E-field E  in 

the current work due to the periodicity of ( )V r . The effective medium is then obtained from 

the averaged fields as 

 .eff= ⋅ = ⋅D ε E ε E  (3) 

By integrating 2
ad rV  on 0b∇ ⋅ =D  with periodic boundary condition and using the V∇  in 

Eq. (2), we obtain 

 ,a b a b⋅ = ⋅E D E D  (4) 

where the subscripts a and b indicate two sets of solutions (with applied external electric field 

0aE  and 0bE ). One notes that effε is symmetric from the assumption of symmetric local ε  at 

every point: 

 .eff eff

a b a b b a⋅ = ⋅ ⋅ = ⋅E ε E E ε E E ε E  (5) 

For a two-dimensional problem, all the vector fields E  and D  stay in-plane, E , D , V and 
the 2x2 permittivity tensor ε  are invariant along z  axis. We can similarly obtain (through 

integration-by-parts with 3
a bd r V ∇× E  and 3 ˆ a bd r z ⋅ ∇ ⋅ U D ): 

 
ˆ ˆ .

a b a b

a b a b

× = ×

⋅ × = ⋅ ×

E E E E

z D D z D D
 (6) 

Then, we can derive the following identity: 

 

ˆ ˆdet

ˆ ˆ det

ˆ det .

a b a b

eff
a b a b

eff
a b

⋅ × = ⋅ ×

= ⋅ × = ⋅ ×

= ⋅ ×

z E E ε z D D

z D D z E E ε

z E E ε

 (7) 

Now, if det ε  does not depend on position, a condition which we impose on all the materials, 
we have 

 det det if det constant.eff = =ε ε ε     (8) 

This serves as our basic principle, being called the “index conservation law” in this work, to 
be used in constructing reconfigurable metamaterials and transformation media in the 
following sections. The determinant in Eq. (8) ensures that if the product of the refractive 
indices along the two principal axes is a constant independent of position before mixing, the 
effective medium keeps the same product of indices along the two final principal axes. It is 
actually a more general result than what we have previously used in [17], in which we stated 
that by mixing the same kind of anisotropic material, also for textured polycrystals (e.g. 
calcite rock) and liquid crystals [18,19], with different orientations, the product of principal 
refractive indices of the effective medium stays the same. We have to note that the results 
here are only valid for two dimensional effective media (without a straight-forward 
correspondence in three dimensional case) where both materials and fields are invariant in the 
third dimension. On the other hand, we can consider specific kinds of two-dimensional 
effective media in which analytic formulas can be derived and verified to satisfy the 
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conservation law, including a case of anisotropic cylinders in an isotropic matrix and another 
case of stratified anisotropic layers listed in the Appendix. 

3. Numerical validation of the index conservation law 

To illustrate the index conservation law before discussing its application, we first consider a 
square array of cylinders, as shown in inset of Fig. 2. The lattice constant is chosen as 1 
without losing generality and the radius of the cylinder is 0.3. The arrows (with the elliptical 
equifrequency contour) denote the direction of optical axis α̂  with n nα β< , making an angle 

θ  to the x-axis. The other optical axis β̂  normal to α̂  is not plotted here. The principal 

refractive indices are defined as nα βε=  and nβ αε=  and the anisotropy factor γ  is 

defined as the ratio between the larger and smaller principal indices ( n nβ αγ = ) so that we 

can use ( )ˆ,I Iγ α  to describe the anisotropic constituents completely with the subscript I s=  

for the matrix domain and I c=  for the cylindrical domain. As an example, we set the 

background anisotropic permittivity as ( ),s s
α βε ε ( )5 2,8 5=  and of the cylinder as 

( ),c c
α βε ε ( )4,1= . The anisotropies in the two domains 1.25sγ =  and 2cγ =  are different 

while the determinant of the individual permittivity tensor α βε ε  is kept at the same constant 4 

so that the index conservation law can be utilized. 

 

Fig. 2. Homogenization of effective media for a square array of circular inclusions (parameters 
described in text). Inset is the sketch of mixture. Elliptical equifrequency contours denote 
anisotropy in different domains and arrows indicate individual directions of optical axis. 

Next we calculate the averaged displacement D  induced by a constant external field 0E  

with finite element analysis (COMSOL Multiphysics, electrostatics module) with periodic 
boundary condition on the square unit cell. We can get the effective permittivity tensor effε  

by doing two simulations (two elements from each simulation with external field either in the 
x- or y-direction) and using the definition in Eq. (3). The effective principal axis indices 

( ),v un n  is then obtained by finding the eigenvalue of effε  and the effective direction of 

optical axis θ  is related to its eigenvectors (here v  and u  are the new directions of principal 
optical axes). We define the effective anisotropy γ  as v un n  with v un n> . In Fig. 2, we 

change ˆ
cα  (optical axis of the medium in circular inclusion) continuously from 0 to 2π  

with a fixed ˆ
sα  (optical axis of the medium in square area) at angle 0 and calculate the 

effective indices vn  and un .The numerical result shows complete consistency with the index 

conservation law in Eq. (8). We can see the discrete symbols in orange color (simulation 
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results) reveal the fact that the product of effective principal indices is a constant which is 
denoted by a solid line (expected result from Eq. (8)) against different directions of optical 
axis Cθ . In addition, Fig. 2 also indicates that we can have a medium with constant v un n  but 

a tunable effective anisotropy and also the direction of resultant principal axes by rotating the 
local optical axis of the cylinder. We have shown a specific case of square array of cylinders 
in a matrix material while the index conservation law is also valid for other geometries and 
for more than two material domains as long as the principal indices product for all material 
domains are the same constant. 

4. Reconfigurable effective medium with constant principal indices product using 
metamaterial structures 

The index conservation law points to the possibility of a reconfigurable effective medium 
through rotating local optical axes (of the core cylinder of the previous example). Here, we 
implement such an effective medium with constant indices product by using an anisotropic 
metamaterial atom. The scheme is shown in Fig. 3. Structure 1a  contains an anisotropic 
homogenous medium (c) with a circular disk geometry. It is to be replaced by structure 2a , 
which we choose to be a pair of metal bars (made of perfect conductors) embedded in air ( 'c ) 
with the same circular boundary. After an effective medium equivalence between structure a1 
and a2 is drawn, we further embed a square array of these homogeneous anisotropic cylinders 
or metal bars in an isotropic background dielectric medium. Now, we can choose a 
background medium (s) to have the same index product as the core cylinder. According to the 
index conservation law, the same index product is carried to the effective medium of the 
whole structure. Rotating the metamaterial atom ( 'c ) is equivalent to rotating the optical axis 
of c. It keeps the index product invariant while the effective optical axis and effective 
anisotropy factor may then be tuned. 

 

Fig. 3. A reconfigurable effective medium implemented by metamaterial atoms. Structure 1a  
denotes the homogeneous anisotropic media c  with a circular disk geometry, which can be 

considered as the effective media of the circular disk structure 2a  which is composed by air 

'c  of the same size with double perfect electric conductor (PEC) bars inside. Structures 1b  

and 2b  are the corresponding structures embedded in an isotropic background in matching 
the principal indices product. 

As an example, we set the length, width and distance between the bars to be 0.7, 0.05 and 
0.2, respectively. Lattice constant is 1 and the filling fraction of c or c' is set as 0.5. In 
practice, we do the above procedure in the reverse order. We find the effective medium of 
structure b2 directly (with periodic boundary condition on the square unit cell) with 
increasing sε  (isotropic permittivity of background to be chosen) from 1 until reaching the 
target value such that the product of the principal indices of the whole effective medium is the 

s s 
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same as the one of background ( sε ). We found that to be 2.53sε = . The corresponding 
product of principal indices of the effective medium against the orientation of the metal bars 
is plotted as square symbols in Fig. 4a, which agrees very well with the expected constant 
(2.53) except for some small discrepancies which can be attributed to the near-fields created 
by the metal bars. The product of the principal indices of the cylinder c is thus determined to 
be 2.53. The remaining anisotropy factor for the cylinder c can then be determined by 
matching the effective anisotropy factor of structure b1 to the effective anisotropy factor 

2 1.445eff
bγ =  from simulating structure b2 with the determined sε . It yields the result 

{ } { }, 5.42,1.18c c
x yε ε =  before rotating the bars. From this point onwards, we can regard this to 

be the effective permittivity of the double bars inside the circular disk of air. We can then plot 
also the effective anisotropy and the effective orientation of structure b1 and structure b2 in 
Fig. 4 and they agree with each other very well. We will see more examples to confirm the 
obtained effective medium description of the double bars in the next section. In principle, we 
can also consider other shapes of inner domains, e.g. an ellipse or a square, so that the index 
conservation law is still valid and we can replace the inner domain to an anisotropic 
metamaterial atom in air. However, we choose a cylindrical inner domain here to maintain the 
rotational symmetry so that rotating the metamaterial atom (in structure b2) means 
equivalently rotating the principal axis of the inner domain (in structure b1), as the 
reconfigurability of the effective medium by rotation. 

 

Fig. 4. Reconfigurable effective medium with microstructure in getting a constant index 
product. It is a pixel. The effective parameters are shown in a). Solid lines are for the 
homogenized model shown in b) while the discrete symbols are for the model with structures 

shown in c). cθ  represents the rotation of optical axis of homogeneous medium in the disc as 

well as the rotation of the bars. Detailed dimensions are discussed in the text. 

From Fig. 4, we have established a reconfigurable effective medium by rotating a 
metamaterial atom (double bars) for (nearly) constant indices product. The orientation of the 
final principal axes can be tuned by rotating the metamaterial atom. On the other hand, the 
anisotropy factor in the current case is in fact insensitive to the orientation of the metamaterial 
atom (c') or the homogeneous cylinder (c) because we have employed an isotropic 
background (anisotropy is assumed from metamaterial atoms to be rotated) unlike the result 
in Fig. 2. We can in fact trace this angle insensitivity back to the Maxwell Garnett formula for 
such geometry in Appendix A. Now, we can regard the structure developed in this section as 
a basic pixel (with a rotatable metamaterial atom) in order to construct higher order effective 
medium with larger tunable range of anisotropy. 

#231300 - $15.00 USD Received 5 Jan 2015; revised 20 Feb 2015; accepted 20 Feb 2015; published 9 Mar 2015 
(C) 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.007140 | OPTICS EXPRESS 7146 



5. Reconfigurable effective media designed by double bars with super-lattices 

With the principal axes of individual pixels able to be tuned by rotating the metamaterial 
atoms (double bars), we can construct a super-lattice with the atomic orientations. Figure 5 
shows an example of stratified layer structure [20–22] with each layer (A or B) being one 
pixel in thickness. All the structural dimensions and material parameters are taken from the 
previous example. As both the cylinders region and background region (blue and gray color 
in Fig. 5(b)) have the same indices product, the supper lattice has the same indices product, 
according to the index conservation law, as well. In layer A, we fix the optical axis along y 
direction and make the one tunable in layer B. The arrangement of optical axes is shown by 
the arrows in Fig. 5.b and it can be substituted by the double bars shown in Fig. 5(c). Now, 
we rotate the double bars in layer B, denoted as the variation of cθ . The effective medium 

results are shown in Fig. 5(a) in which discrete symbols represent the simulation results with 
the metamaterial double bars and solid lines represent the simulation results with the 
homogeneous cylinders. The two sets of result match each other very well, confirming our 
scheme in using the metamaterial atoms to construct the reconfigurable effective medium 
with constant indices product ( v un n  is nearly a constant from the simulation results with 

microstructures). Both the effective anisotropy factor and the direction of the effective 
principal axes can be tuned by the orientations of the metamaterial atoms. 

 

Fig. 5. Effective medium of constant indices product of a bilayer superlattice structure 
constructed from basic pixels in Fig. 4. Solid lines are results for the homogenized cylinder 
model shown in b). Discrete symbols are the results for the model with double bars shown in 
c). 

Another example of super-structure is a checkerboard system (usually isotropic [23–27]). 
Here, we extend the application of checkerboard systems to an anisotropic case. It is shown in 
Fig. 6. We continue to make use of the same effective medium of the double bars system as a 
unit cell to construct the checkerboard in which the optical axis is fixed along x direction in 
pixel A and it is tunable in pixel B. Figure 6(b) is the system with homogeneous cylinder 
description while Fig. 6(c) is the one with microstructure for actual implementation. The 
constant line in Fig. 6(a) validates our law again with the solid lines denoting the 
homogenized cylinder model (Fig. 6(b)) while the discrete symbols denoting results for the 
double bars system model (Fig. 6(c)). Comparing to the bilayer superlattice, the checkerboard 
superlattice has a similar tunable range for the anisotropy factor while the direction of the 
effective principal axis can become a linear function of the orientation of the metamaterial 
atoms again for simplicity. 
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Fig. 6. Effective medium of constant indices product of a checkerboard superlattice structure 
constructed from basic pixels in Fig. 4. Solid lines are results for the homogenized model 
shown in b). Discrete symbols are the results for the model with double bars shown in c). 

Both the bilayer and the checkerboard systems in the cases above show that we can find a 
general route to construct an effective medium for which the effective indices product v un n  is 

constant and the anisotropy can be tuned by rotating the structure. Although the numerical 
results show a small discrepancy (some fluctuation) between the homogenized cylinder and 
micro-structured models, this small discrepancy will not severely affect the final application 
in experiments. Although we have focused on using pixels with only a single degree of 
freedom about the orientation of the metamaterial structure, it is worthwhile to mention that 
the presented scheme can be further extended to pixels containing different anisotropy factors 
as long as the indices product is the same constant. This constant indices product is related to 
a transformation optical medium associated with an area-preserving map. Here, we are 
exploring a continuous degree of freedom from the orientation of the metamaterial structure 
in each pixel. We also note that there can be other different schemes. For example, one can 
also choose from two different isotropic permittivities in each pixel as a discrete degree of 
freedom for the reconfigurability of metamaterials [28]. 

6. Conclusion 

In this work, by establishing an index conservation law in mixing anisotropic effective media 
of constant indices product, we can design reconfigurable effective media with 
microstructures composed of isotropic dielectrics and anisotropic metal bars. Importantly, the 
results presented in this paper hold for fixed frequency homogenization wherein the 
wavelength is much larger than the size of the periodic cell (in practice the wavelength to cell 
size ratio should be at least three). We note that apart from the two-scale convergence method 
used in this work, there are also other approaches based on scattering behavior in obtaining 
numerically the effective medium of anisotropic materials with generic settings [29]. One 
should also note that thanks to correspondences between electrostatic and certain elastostatic 
problems in heterogeneous cylindrical media, our law applies mutatis mutandis to the case of 
effective shear tensor for anti-plane shear waves in acoustic metamaterials. This law can also 
be applied to the effective tensor of conductivity for thermal metamaterials recently 
introduced in order to mould the flow of heat [30]. We are currently working on an extension 
of our law to flexural waves propagating in thin structured plates [31], and we hope to be able 
to find similar laws in hydrodynamics. In conclusion, we think this route is a step forward in 
operating and controlling propagation and diffusion phenomena in microstructured materials 
in the near future. 
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Appendix A: Effective medium for an array of anisotropic circular cylinders in isotropic 
background 

For an array of circular isotropic dielectric cylinders in a background isotropic dielectric 
medium, it is well known that the Maxwell Garnett (MG) formula gives the approximated 
effective permittivity when the filling fraction of the cylinders is small. It can be readily 
obtained from the Clausius-Mossotti equation in two dimensions with the single cylinder 
polarizability derived from the electrostatic problem when the cylinder is under a constant 
applied electric field [32]. As the electric field inside the cylinder is a constant and is along 
the same direction of the applied field, a variation of the permittivity of the cylinder in the 
direction perpendicular to the applied field does not change the field solution and hence the 
effective permittivity along the applied field direction is unchanged. It implies that the 
effective medium for a periodic array of anisotropic cylinders is decoupled in the two 
directions of principal axes. Suppose the permittivity tensor of the cylinder along the two 
principal axes is 

 
0

.
0

A
A

A
α

β

ε
ε

 
=   
 

ε  (9) 

and the permittivity of the isotropic background is Bε . Then the effective medium is 
governed by the MG formula: 

 .
eff B A B

eff B A B
fα α

α α

ε ε ε ε
ε ε ε ε

− −
=

+ +
 (10) 

and similarly 

 .
eff B A B

eff B A B
fβ β

β β

ε ε ε ε
ε ε ε ε

− −
=

+ +
 (11) 

with zero off-diagonal terms in the effective permittivity tensor and f being the area filling 
fraction of the cylinders. Now, it can be verified from Eq. (10) and (11) directly that 

 ( ) ( )2 2
if .eff eff B A A B

α β α βε ε ε ε ε ε= =   (12) 

Therefore, the MG formula for the effective medium of anisotropic circular cylinders in the 
small filling fraction limit is a special case of our central theorem Eq. (8). On the other hand, 
if we fix the anisotropy factor Aγ  (defined as the ratio between the larger and the smaller 

principal index) of the cylinder and we vary the product A A
α βε ε  or Bε , we can prove from Eq. 

(10) and (11) directly that 

 
11

.
11

eff
A

eff
A

f
γγ
γγ

−− ≤
++

 (13) 

with equality happens at the condition specified by Eq. (12). 

Appendix B: Effective medium for anisotropic periodically stratified medium 

For a periodically stratified medium consisting of two layers A and B in a unit cell, we can 
specify the permittivity tensors of the two layers as 
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where I A=  or B , I
αε  and I

βε  are the principal elements of permittivity tensor, and the 

rotation matrix is 

 ( ) cos sin
.

sin cos

I I
I

I I
R

θ θθ
θ θ

 −
=  
 

 (15) 

in which Iθ  denotes the orientation of the optical axes of the two layers with respect to the x-
axis, superscript “T” represents transpose of a matrix. Then we can write the constitutive 
relation for each layer as 

 . .
I I I I I
x x xx xy xI
I I I I I
y y xy yy y

D E E

D E E

ε ε
ε ε

      
= =            

      
ε  (16) 

Considering the layers are stacked along the y-direction so that xE  and yD  are continuous 

across the boundary between A- and B-layer. Together with the fact that they vary so slowly 
within each layer in the long wavelength limit, we can safely regard them as constants 
throughout the whole unit cell, i.e. 

 , .A B A B
x x x y y yE E E D D D= = = =  (17) 

where ...  denotes the averaged fields. By putting Eq. (17) into (16), we can average the 

remaining two fields by 

 
A B

x x x
A BA B

y yy

D D D
f f

E EE

     
  = +            

 (18) 

with Af  ( Bf ) being the filling fraction of the A (B) - layer and we obtain the effective 

constitutive relation ([11,12]) 
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x x xxx xyeff
eff eff
xy yyy y y

D E E
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ε ε
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where 
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,
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A B xy xyeff A B
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 (20) 

hold for the bilayer system. Now it can be verified from Eq. (20) that 

 det det det ifeff A B A A B B
α β α βε ε ε ε= = =ε ε ε    (21) 
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which is a special case of our central theorem Eq. (8). On the other hand, we can define 
anisotropy factor γ  as the ratio between the larger and smaller principal index. It is related to 

the permittivity ε  tensor by 

 
( )Tr1

det
γ

γ
+ =

ε
ε

 (22) 

Then, we fix the anisotropy factors Aγ  and Bγ  while we vary the product A A
α βε ε  or B B

α βε ε , we 

can prove by extremizing Eq. (22) that effγ  is at local maxima or local minima at the 

condition specified by Eq. (21). 
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