S. Jeong, M. Kim, K. Chang, H. Kim, C. Park et al., Huntingtin is localized in the nucleus during preimplanatation embryo development in mice, International Journal of Developmental Neuroscience, vol.24, issue.1, pp.81-85, 2006.
DOI : 10.1016/j.ijdevneu.2005.10.001

C. Sinadinos, T. Burbidge-king, D. Soh, L. Thompson, J. Marsh et al., Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons, Neurobiology of Disease, vol.34, issue.2, pp.389-395, 2009.
DOI : 10.1016/j.nbd.2009.02.012

C. Benn, T. Sun, G. Sadri-vakili, K. Mcfarland, D. Dirocco et al., Huntingtin Modulates Transcription, Occupies Gene Promoters In Vivo, and Binds Directly to DNA in a Polyglutamine-Dependent Manner, Journal of Neuroscience, vol.28, issue.42, pp.10720-10733, 2008.
DOI : 10.1523/JNEUROSCI.2126-08.2008

L. Moumne, S. Betuing, and J. Caboche, Multiple Aspects of Gene Dysregulation in Huntington???s Disease, Frontiers in Neurology, vol.4, p.24167500, 2013.
DOI : 10.3389/fneur.2013.00127

R. Smith, K. Bacos, V. Fedele, D. Soulet, H. Walz et al., Mutant huntingtin interacts with ??-tubulin and disrupts vesicular transport and insulin secretion, Human Molecular Genetics, vol.18, issue.20, pp.3942-3954, 2009.
DOI : 10.1093/hmg/ddp336

R. Chaturvedi and M. Beal, Mitochondrial Approaches for Neuroprotection, Annals of the New York Academy of Sciences, vol.280, issue.Suppl 3, pp.395-412, 2008.
DOI : 10.1196/annals.1427.027

S. Browne, Mitochondria and Huntington's Disease Pathogenesis, Annals of the New York Academy of Sciences, vol.20, issue.1, pp.358-382, 2008.
DOI : 10.1196/annals.1427.018

J. Gil and A. Rego, Mechanisms of neurodegeneration in Huntington's disease, Eur J Neurosci, vol.27, p.18588526, 2008.

R. Augustin, The protein family of glucose transport facilitators: It's not only about glucose after all, IUBMB Life, vol.25, issue.Part 3, pp.315-333, 2010.
DOI : 10.1002/iub.315

S. Vannucci, Developmental Expression of GLUT1 and GLUT3 Glucose Transporters in Rat Brain, Journal of Neurochemistry, vol.44, issue.1, pp.240-246, 1994.
DOI : 10.1046/j.1471-4159.1994.62010240.x

S. Vannucci, F. Maher, and I. Simpson, Glucose transporter proteins in brain: Delivery of glucose to neurons and glia, Glia, vol.21, issue.1, pp.2-21, 1997.
DOI : 10.1002/(SICI)1098-1136(199709)21:1<2::AID-GLIA2>3.0.CO;2-C

R. Leino, D. Gerhart, A. Van-bueren, A. Mccall, and L. Drewes, Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain, Journal of Neuroscience Research, vol.126, issue.5, pp.617-626, 1997.
DOI : 10.1002/(SICI)1097-4547(19970901)49:5<617::AID-JNR12>3.0.CO;2-S

F. Maher, S. Vannucci, J. Takeda, and I. Simpson, Expression of mouse-GLUT3 and human-GLUT3 glucose transporter proteins in brain, Biochemical and Biophysical Research Communications, vol.182, issue.2, pp.703-711, 1992.
DOI : 10.1016/0006-291X(92)91789-S

I. Simpson, D. Dwyer, D. Malide, K. Moley, A. Travis et al., The facilitative glucose transporter GLUT3: 20 years of distinction, AJP: Endocrinology and Metabolism, vol.295, issue.2, pp.242-253, 2008.
DOI : 10.1152/ajpendo.90388.2008

J. Bolanos and A. Almeida, The pentose-phosphate pathway in neuronal survival against nitrosative stress, IUBMB Life, vol.62, pp.14-18, 2010.

E. Brekke, A. Walls, A. Schousboe, H. Waagepetersen, and U. Sonnewald, C]Glucose into TCA Cycle Intermediates and Neurotransmitter Amino Acids in Functionally Intact Neurons, Journal of Cerebral Blood Flow & Metabolism, vol.41, issue.9, pp.1788-1799, 2012.
DOI : 10.1038/jcbfm.2012.85

D. Wallace, A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine, Annual Review of Genetics, vol.39, issue.1, pp.359-407, 2005.
DOI : 10.1146/annurev.genet.39.110304.095751

S. Ledoux, N. Druzhyna, S. Hollensworth, J. Harrison, and G. Wilson, Mitochondrial DNA repair: A critical player in the response of cells of the CNS to genotoxic insults, Neuroscience, vol.145, issue.4, pp.1249-1259, 2007.
DOI : 10.1016/j.neuroscience.2006.10.002

W. Koopman, F. Distelmaier, J. Smeitink, and P. Willems, OXPHOS mutations and neurodegeneration, The EMBO Journal, vol.95, issue.1, pp.9-29, 2013.
DOI : 10.1038/cr.2011.82

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545297

M. Lin and M. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.175, issue.7113, pp.787-795, 2006.
DOI : 10.1038/nature05292

C. Zabel, L. Mao, B. Woodman, M. Rohe, M. Wacker et al., A Large Number of Protein Expression Changes Occur Early in Life and Precede Phenotype Onset in a Mouse Model for Huntington Disease, Molecular & Cellular Proteomics, vol.8, issue.4, pp.720-734, 2009.
DOI : 10.1074/mcp.M800277-MCP200

F. Mochel and R. Haller, Energy deficit in Huntington disease: why it matters, Journal of Clinical Investigation, vol.121, issue.2, pp.493-499, 2011.
DOI : 10.1172/JCI45691

T. Kuwert, H. Lange, K. Langen, H. Herzog, A. Aulich et al., CORTICAL AND SUBCORTICAL GLUCOSE CONSUMPTION MEASURED BY PET IN PATIENTS WITH HUNTINGTON'S DISEASE, Brain, vol.113, issue.5, pp.1405-1423, 1990.
DOI : 10.1093/brain/113.5.1405

A. Feigin, C. Tang, Y. Ma, P. Mattis, D. Zgaljardic et al., Thalamic metabolism and symptom onset in preclinical Huntington's disease, Brain, vol.130, issue.11, pp.2858-2867, 2007.
DOI : 10.1093/brain/awm217

H. Shin, M. Kim, S. Lee, K. Lee, M. Kim et al., Decreased Metabolism in the Cerebral Cortex in Early-Stage Huntington's Disease: A Possible Biomarker of Disease Progression?, Journal of Clinical Neurology, vol.9, issue.1, p.23346156, 2013.
DOI : 10.3988/jcn.2013.9.1.21

F. Mochel, B. Durant, X. Meng, O. Callaghan, J. Yu et al., Early Alterations of Brain Cellular Energy Homeostasis in Huntington Disease Models, Journal of Biological Chemistry, vol.287, issue.2, pp.1361-1370, 2012.
DOI : 10.1074/jbc.M111.309849

W. Gamberino, W. Brennan, and . Jr, Glucose Transporter Isoform Expression in Huntington's Disease Brain, Journal of Neurochemistry, vol.63, issue.4, pp.1392-1397, 1994.
DOI : 10.1046/j.1471-4159.1994.63041392.x

A. Vittori, C. Breda, M. Repici, M. Orth, R. Roos et al., Copy-number variation of the neuronal glucose transporter gene SLC2A3 and age of onset in Huntington's disease, Human Molecular Genetics, vol.23, issue.12, pp.3129-3137, 2014.
DOI : 10.1093/hmg/ddu022

P. Reddy, P. Mao, and M. Manczak, Mitochondrial structural and functional dynamics in Huntington's disease, Brain Research Reviews, vol.61, issue.1, pp.33-48, 2009.
DOI : 10.1016/j.brainresrev.2009.04.001

A. Benchoua, Y. Trioulier, D. Zala, M. Gaillard, N. Lefort et al., Involvement of Mitochondrial Complex II Defects in Neuronal Death Produced by N-Terminus Fragment of Mutated Huntingtin, Molecular Biology of the Cell, vol.17, issue.4, pp.1652-1663, 2006.
DOI : 10.1091/mbc.E05-07-0607

E. Napoli, S. Wong, C. Hung, C. Ross-inta, P. Bomdica et al., Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease, Human Molecular Genetics, vol.22, issue.5, pp.989-1004, 2012.
DOI : 10.1093/hmg/dds503

M. Damiano, E. Diguet, C. Malgorn, D. Aurelio, M. Galvan et al., A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin, Human Molecular Genetics, vol.22, issue.19, pp.3869-3882, 2013.
DOI : 10.1093/hmg/ddt242

T. Cocco, C. Pacelli, P. Sgobbo, and G. Villani, Control of OXPHOS efficiency by complex I in brain mitochondria, Neurobiology of Aging, vol.30, issue.4, pp.622-629, 2009.
DOI : 10.1016/j.neurobiolaging.2007.08.002

N. Klepac, M. Relja, R. Klepac, S. Hecimovic, T. Babic et al., Oxidative stress parameters in plasma of Huntington's disease patients, asymptomatic Huntington???s disease gene carriers and healthy subjects, Journal of Neurology, vol.23, issue.12, pp.1676-1683, 2007.
DOI : 10.1007/s00415-007-0611-y

S. Kim, L. Marekov, P. Bubber, S. Browne, I. Stavrovskaya et al., Mitochondrial Aconitase is a Transglutaminase 2 Substrate: Transglutamination is a Probable Mechanism Contributing to High-Molecular-Weight Aggregates of Aconitase and Loss of Aconitase Activity in Huntington Disease Brain, Neurochemical Research, vol.64, issue.10, pp.1245-1255, 2005.
DOI : 10.1007/s11064-005-8796-x

J. Butterworth, C. Yates, and G. Reynolds, Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and ??-glutamyl transpeptidase in post-mortem brain from Huntington's disease and agonal cases, Journal of the Neurological Sciences, vol.67, issue.2, pp.161-171, 1985.
DOI : 10.1016/0022-510X(85)90112-1

M. Perluigi, H. Poon, W. Maragos, W. Pierce, J. Klein et al., Proteomic Analysis of Protein Expression and Oxidative Modification in R6/2 Transgenic Mice: A Model of Huntington Disease, Molecular & Cellular Proteomics, vol.4, issue.12, pp.1849-1861, 2005.
DOI : 10.1074/mcp.M500090-MCP200

J. Marsh and L. Thompson, Can flies help humans treat neurodegenerative diseases?, BioEssays, vol.11, issue.5, pp.485-496, 2004.
DOI : 10.1002/bies.20029

J. Bilen and N. Bonini, as a Model for Human Neurodegenerative Disease, Annual Review of Genetics, vol.39, issue.1, pp.153-171, 2005.
DOI : 10.1146/annurev.genet.39.110304.095804

J. Liévens, T. Rival, M. Iché, H. Chneiweiss, and S. Birman, Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila, Human Molecular Genetics, vol.14, issue.5, pp.713-724, 2005.
DOI : 10.1093/hmg/ddi067

K. Baker and C. Thummel, Diabetic Larvae and Obese Flies???Emerging Studies of Metabolism in Drosophila, Cell Metabolism, vol.6, issue.4, pp.257-266, 2007.
DOI : 10.1016/j.cmet.2007.09.002

A. Haselton and Y. Fridell, Adult <i>Drosophila</i> melanogaster as a model for the study of glucose homeostasis, Aging, vol.2, issue.8, pp.523-526, 2010.
DOI : 10.18632/aging.100185

J. Steffan, L. Bodai, J. Pallos, M. Poelman, A. Mccampbell et al., Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila, Nature, vol.413, issue.6857, pp.739-743, 2001.
DOI : 10.1038/35099568

S. Escher and A. Rasmuson-lestander, The Drosophila Glucose Transporter Gene: cDNA Sequence, Phylogenetic Comparisons, Analysis of Functional Sites and Secondary Structures, Hereditas, vol.368, issue.2, pp.95-103, 1999.
DOI : 10.1111/j.1601-5223.1999.00095.x

M. Besson, P. Dupont, Y. Fridell, and J. Liévens, Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease, Human Molecular Genetics, vol.19, issue.17, pp.3372-3382, 2010.
DOI : 10.1093/hmg/ddq249

C. Colville, M. Seatter, T. Jess, G. Gould, and H. Thomas, oocytes: substrate specificities and effects of transport inhibitors, Biochemical Journal, vol.290, issue.3, pp.701-706, 1993.
DOI : 10.1042/bj2900701

C. Bittner, A. Loaiza, I. Ruminot, V. Larenas, T. Sotelo-hitschfeld et al., High resolution measurement of the glycolytic rate, Frontiers in Neuroenergetics, vol.2, 2010.
DOI : 10.3389/fnene.2010.00026

J. Liévens, M. Iché, M. Laval, C. Faivre-sarrailh, and S. Birman, AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington's disease, Human Molecular Genetics, vol.17, issue.6, pp.882-894, 2008.
DOI : 10.1093/hmg/ddm360

T. Rival, L. Soustelle, C. Strambi, M. Besson, M. Iché et al., Decreasing Glutamate Buffering Capacity Triggers Oxidative Stress and Neuropil Degeneration in the Drosophila Brain, Current Biology, vol.14, issue.7, pp.599-605, 2004.
DOI : 10.1016/j.cub.2004.03.039

URL : https://hal.archives-ouvertes.fr/hal-00310868

G. Jackson, I. Salecker, X. Dong, X. Yao, N. Arnheim et al., Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons, Neuron, vol.21, issue.3, pp.633-642, 1998.
DOI : 10.1016/S0896-6273(00)80573-5

N. Franceschini and K. Kirschfeld, Les ph??nom??nes de pseudopupille dans l'??il compos?? deDrosophila, Kybernetik, vol.153, issue.5, pp.159-182, 1971.
DOI : 10.1007/BF02215177

J. Tennessen, K. Baker, G. Lam, J. Evans, and C. Thummel, The Drosophila Estrogen-Related Receptor Directs a Metabolic Switch that Supports Developmental Growth, Cell Metabolism, vol.13, issue.2, pp.139-148, 2011.
DOI : 10.1016/j.cmet.2011.01.005

T. Rzezniczak and T. Merritt, Interactions of NADP-Reducing Enzymes Across Varying Environmental Conditions: A Model of Biological Complexity, G3&#58; Genes|Genomes|Genetics, vol.2, issue.12, pp.1613-1623, 2012.
DOI : 10.1534/g3.112.003715

S. Legan, I. Rebrin, R. Mockett, S. Radyuk, V. Klichko et al., Overexpression of Glucose-6-phosphate Dehydrogenase Extends the Life Span of Drosophila melanogaster, Journal of Biological Chemistry, vol.283, issue.47, pp.32492-32499, 2008.
DOI : 10.1074/jbc.M805832200

C. Wang, Y. Chen, Y. Wang, M. Huang, T. Yen et al., Reduced neuronal expression of ribose- 5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila, Aging Cell, vol.11, p.22040003, 2011.

Y. Umeda-kameyama, M. Tsuda, C. Ohkura, T. Matsuo, Y. Namba et al., Thioredoxin Suppresses Parkin-associated Endothelin Receptor-like Receptor-induced Neurotoxicity and Extends Longevity in Drosophila, Journal of Biological Chemistry, vol.282, issue.15, pp.11180-11187, 2007.
DOI : 10.1074/jbc.M700937200

K. Lee, K. Iijima-ando, K. Iijima, W. Lee, J. Lee et al., JNK/FOXO-mediated Neuronal Expression of Fly Homologue of Peroxiredoxin II Reduces Oxidative Stress and Extends Life Span, Journal of Biological Chemistry, vol.284, issue.43, pp.29454-29461, 2009.
DOI : 10.1074/jbc.M109.028027

S. Radyuk, V. Klichko, B. Spinola, R. Sohal, and W. Orr, The peroxiredoxin gene family in drosophila melanogaster, Free Radical Biology and Medicine, vol.31, issue.9, pp.1090-1100, 2001.
DOI : 10.1016/S0891-5849(01)00692-X

M. Damiano, L. Galvan, N. Deglon, and E. Brouillet, Mitochondria in Huntington's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.1, pp.52-61, 2010.
DOI : 10.1016/j.bbadis.2009.07.012

V. Costa and L. Scorrano, Shaping the role of mitochondria in the pathogenesis of Huntington's disease, The EMBO Journal, vol.36, issue.8
DOI : 10.1038/emboj.2012.65

M. Lazarou, S. Smith, D. Thorburn, M. Ryan, and M. Mckenzie, Assembly of nuclear DNA-encoded subunits into mitochondrial complex???IV, and their preferential integration into supercomplex forms in patient mitochondria, FEBS Journal, vol.257, issue.Suppl. 2, pp.6701-6713, 2009.
DOI : 10.1111/j.1742-4658.2009.07384.x

C. Ugalde, M. Moran, A. Blazquez, J. Arenas, and M. Martin, Mitochondrial Disorders Due to Nuclear OXPHOS Gene Defects, Adv Exp Med Biol, vol.652, pp.85-116, 2009.
DOI : 10.1007/978-90-481-2813-6_7

H. Kita, J. Carmichael, J. Swartz, S. Muro, A. Wyttenbach et al., Modulation of polyglutamine-induced cell death by genes identified by expression profiling, Human Molecular Genetics, vol.11, issue.19, pp.2279-2287, 2002.
DOI : 10.1093/hmg/11.19.2279

J. Lee, E. Ivanova, I. Seong, T. Cashorali, I. Kohane et al., Unbiased Gene Expression Analysis Implicates the huntingtin Polyglutamine Tract in Extra-mitochondrial Energy Metabolism, PLoS Genetics, vol.102, issue.8, pp.135-17708681, 2007.
DOI : 10.1371/journal.pgen.0030135.st014

J. Krzyszton-russjan, D. Zielonka, J. Jackiewicz, S. Kusmirek, I. Bubko et al., A study of molecular changes relating to energy metabolism and cellular stress in people with Huntington???s disease: looking for biomarkers, Journal of Bioenergetics and Biomembranes, vol.5, issue.1-2, pp.71-85, 2012.
DOI : 10.1007/s10863-012-9479-3

W. Powers, T. Videen, J. Markham, L. Mcgee-minnich, J. Antenor-dorsey et al., Selective defect of in vivo glycolysis in early Huntington's disease striatum, Proceedings of the National Academy of Sciences, vol.104, issue.8, pp.2945-2949, 2007.
DOI : 10.1073/pnas.0609833104

C. Gouarné, G. Tardif, J. Tracz, V. Latyszenok, M. Michaud et al., Early Deficits in Glycolysis Are Specific to Striatal Neurons from a Rat Model of Huntington Disease, PLoS ONE, vol.101, issue.11, p.24303051, 2013.
DOI : 10.1371/journal.pone.0081528.s002

J. Oliveira, Nature and cause of mitochondrial dysfunction in Huntington???s disease: focusing on huntingtin and the striatum, Journal of Neurochemistry, vol.31, issue.Suppl. 1, pp.1-12, 2010.
DOI : 10.1111/j.1471-4159.2010.06741.x

E. Stack, W. Matson, and R. Ferrante, Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants, Annals of the New York Academy of Sciences, vol.1762, issue.Suppl, pp.79-92, 2008.
DOI : 10.1196/annals.1427.008

A. Herrero-mendez, A. Almeida, E. Fernandez, C. Maestre, S. Moncada et al., The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C???Cdh1, Nature Cell Biology, vol.193, issue.6, pp.747-752, 2009.
DOI : 10.1093/nar/gkh247

P. Rodriguez-rodriguez, E. Fernandez, A. Almeida, and J. Bolanos, Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration, Cell Death and Differentiation, vol.193, issue.10, pp.1582-1589, 2012.
DOI : 10.1038/cdd.2012.33

V. Senatorov, V. Charles, P. Reddy, D. Tagle, and D. Chuang, Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington???s disease, Molecular and Cellular Neuroscience, vol.22, issue.3, pp.285-297, 2003.
DOI : 10.1016/S1044-7431(02)00013-1

J. Mazzola and M. Sirover, Alteration of nuclear glyceraldehyde-3-phosphate dehydrogenase structure in Huntington???s disease fibroblasts, Molecular Brain Research, vol.100, issue.1-2, pp.95-101, 2002.
DOI : 10.1016/S0169-328X(02)00160-2

H. Varma, R. Cheng, C. Voisine, A. Hart, and B. Stockwell, Inhibitors of metabolism rescue cell death in Huntington's disease models, Proceedings of the National Academy of Sciences, vol.104, issue.36, pp.14525-14530, 2007.
DOI : 10.1073/pnas.0704482104

S. Fernandez-fernandez, A. Almeida, and J. Bolanos, Antioxidant and bioenergetic coupling between neurons and astrocytes, Biochemical Journal, vol.276, issue.1, pp.3-11, 2012.
DOI : 10.1523/JNEUROSCI.6612-10.2011

J. Dusick, T. Glenn, W. Lee, P. Vespa, D. Kelly et al., ]glucose Labeling Study in Humans, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.9, pp.1593-1602, 2007.
DOI : 10.1089/neu.2005.22.955

L. Dunn, G. Allen, A. Mamais, H. Ling, A. Li et al., Dysregulation of glucose metabolism is an early event in sporadic Parkinson's disease, Neurobiology of Aging, vol.35, issue.5, pp.1111-1115, 2013.
DOI : 10.1016/j.neurobiolaging.2013.11.001

M. Sorolla, G. Reverter-branchat, J. Tamarit, I. Ferrer, R. J. Cabiscol et al., Proteomic and oxidative stress analysis in human brain samples of Huntington disease, Free Radical Biology and Medicine, vol.45, issue.5, pp.667-678, 2008.
DOI : 10.1016/j.freeradbiomed.2008.05.014

R. Mason, M. Casu, N. Butler, C. Breda, S. Campesan et al., Glutathione peroxidase activity is neuroprotective in models of Huntington's disease, Nature Genetics, vol.267, issue.10, pp.1249-1254, 2013.
DOI : 10.1038/mp.2011.142

C. Turner and A. Schapira, Mitochondrial matters of the brain: the role in Huntington???s disease, Journal of Bioenergetics and Biomembranes, vol.25, issue.17, pp.193-198, 2010.
DOI : 10.1007/s10863-010-9290-y

R. Butow and N. Avadhani, Mitochondrial Signaling, Molecular Cell, vol.14, issue.1, pp.1-15, 2004.
DOI : 10.1016/S1097-2765(04)00179-0

J. Copeland, J. Cho, T. Lo, . Jr, J. Hur et al., Extension of Drosophila Life Span by RNAi of the Mitochondrial Respiratory Chain, Current Biology, vol.19, issue.19, pp.1591-1598, 2009.
DOI : 10.1016/j.cub.2009.08.016

H. Takanaga, B. Chaudhuri, and W. Frommer, GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.4, p.18177733, 2008.
DOI : 10.1016/j.bbamem.2007.11.015

C. Bittner, R. Valdebenito, I. Ruminot, A. Loaiza, V. Larenas et al., Fast and Reversible Stimulation of Astrocytic Glycolysis by K+ and a Delayed and Persistent Effect of Glutamate, Journal of Neuroscience, vol.31, issue.12, pp.4709-4713, 2011.
DOI : 10.1523/JNEUROSCI.5311-10.2011