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Effective response to infectious disease epidemics requires focused control measures in areas predicted to be
at high risk of new outbreaks. We aimed to test whether mobile operator data could predict the early spatial
evolution of the 2010 Haiti cholera epidemic. Daily case data were analysed for 78 study areas from October
16 to December 16, 2010. Movements of 2.9 million anonymous mobile phone SIM cards were used to create
a national mobility network. Two gravity models of population mobility were implemented for comparison.
Both were optimized based on the complete retrospective epidemic data, available only after the end of the
epidemic spread. Risk of an area experiencing an outbreak within seven days showed strong dose-response
relationship with the mobile phone-based infectious pressure estimates. The mobile phone-based model
performed better (AUC 0.79) than the retrospectively optimized gravity models (AUC 0.66 and 0.74,
respectively). Infectious pressure at outbreak onset was significantly correlated with reported cholera cases
during the first ten days of the epidemic (p , 0.05). Mobile operator data is a highly promising data source
for improving preparedness and response efforts during cholera outbreaks. Findings may be particularly
important for containment efforts of emerging infectious diseases, including high-mortality influenza
strains.

R
e-occurring infectious disease outbreaks due to cholera, measles and other preventable infectious diseases
contribute to a major disease burden affecting low- and middle-income countries1,2. Concurrently, out-
breaks of new infectious diseases with pandemic potential pose a considerable threat to human life and

development3,4. Response to, and ideally containment of5, an infectious disease outbreak can be greatly improved
if health care response and outbreak control measures can be focused to areas predicted to be at the highest risk of
experiencing new outbreaks6,7. Accurate models of the geographic distribution of epidemic risk could signifi-
cantly enhance the population-level effects of interventions implemented to control the spread of transmittable
diseases8. Considerable progress has been made in predicting temporal evolution of epidemics once outbreaks
have progressed beyond a small initial group of cases7,9. However, predicting spatial transmission routes of
epidemics has proven to be remarkably difficult, due to the importance of rare, long-distance transmission
events10, limited data on population mobility, unknown population immunity levels9, low sensitivity and spe-
cificity of case reports11 and limited access to accurate and spatiotemporally resolved case data12.

Empirical data has provided key insight into the spatial spread of measles in England13 and Niger14 as well as
into influenza spread in the USA and Europe11,12,15. While population mobility plays a key role in such modelling
studies10,16, it has not been possible, until now, to study detailed and concurrent data on both population mobility
and spatiotemporal distribution of cases. Instead, empirical studies have used either models of population
mobility, preferentially gravity models17, or census data on work-home commuting as proxies for total mobility
during outbreaks11. Although highly significant correlations exist between these mobility patterns and retrospect-
ive data on epidemic spread, large unexplained variations remain10,18,19. It is also not clear how to choose and
properly parameterize mobility models across contexts in new outbreaks. This is especially problematic during
the critical early outbreak phases, when interventions have the greatest effect, but limited data are available to fit
transmission models.

Anonymous mobile operator data may provide a new source of large-scale empirical data on which to build
more accurate models of infectious disease spread. Mobile phone operators register the mobile phone tower
closest to the mobile user at the time of each call and text message. This allows individual phones to be localized at
a resolution equal to the coverage area of the mobile phone tower (typically one to ten km2). In the public health
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field, this data has notably been used as a proxy for nationwide
mobility patterns in malaria modelling studies20,21. However, the
extent to which this type of data accurately reflect movements of
infectious persons and its utility in predicting spatial spread of infec-
tious agents have not been evaluated.

The largest cholera epidemic to strike a single country in recent
history was the 2010 Haitian outbreak22. The first confirmed cholera
case in Haiti developed symptoms on October 14, 2010 in a hamlet
60 km north of the capital Port-au-Prince. The epidemic spread first
explosively along the nearby Artibonite river (Fig. 1) and subse-
quently, during a period of two months, throughout the entire
country23.

The 2010 Haiti cholera epidemic provides a unique opportunity to
explore the influence of population mobility on the spatial evolution
of a large-scale cholera outbreak. First, cholera had not previously
affected the country for at least a century, thereby rendering epi-
demic development unbiased by differential population immunity.
Second, the circumstances and location of the onset of the cholera
epidemic are well understood23–25. Third, daily case reporting based
on WHO criteria was initiated very early throughout the country,
and the notification system was highly effective22–25.

In this study, we utilized data on the movement of 2.9 million
anonymised mobile phone SIM cards in Haiti during the early phase
of the Haitian cholera epidemic together with highly spatiotempo-
rally resolved case data. We used these data to test the hypothesis that
mobile operator data could be used to dynamically predict the spatial
evolution of the epidemic from outbreak onset.

Methods
Data collection. Cholera case data. As soon as the epidemic was recognized, the
Haitian government, with support from the US Centers for Disease Control and
Prevention, implemented a nationwide monitoring program22. Each day, government
and non-governmental health facilities in Haiti reported probable cholera cases
(ambulatory patients, hospital admissions and deaths) to the Directorate of Health in
each of the ten administrative departments (Haitian provinces). Probable cases were
defined according to a modified WHO definition as ‘‘acute watery diarrhoea, with or
without vomiting, in persons of all ages’’22. Vibrio cholerae O1 infection was
confirmed via bacterial culture for early cases in all departments. We have previously
validated case data from the National Cholera Surveillance system by carrying out
field investigations, comparing case reports with data available from registers in
cholera treatment centres managed by Haitian teams, Doctors without Borders and
medical brigades from Cuba23.

The daily case reports per health facility enabled us to determine daily case num-
bers per commune while the epidemic spread throughout the country (October 14
and 64 days onwards). We defined the end of the study period as December 16, when
the peak of the epidemic was reached and all but one commune had reported at least
one case. In 62 communes out of 140 communes, including the eight communes
within the Port-au-Prince metropolitan area, there may have been patients who
sought healthcare in neighbouring communes. For all such suspected communes we
merged the communes into a single area, thereby creating a total of 78 study areas
throughout the country (see S1 for details). One study area was excluded due to
absence of mobile network coverage. To predict spatial spread of cholera, we defined a
study area to have acquired a novel local outbreak if five or more cases were recorded
on any given day, thereby avoiding misclassification of spurious cases of diarrhea as
new cholera outbreaks. For sensitivity analyses of the outbreak definition, see S5.

Mobile phone data. The analysed anonymous mobile phone data consisted of the last
outgoing call or text message each day from October 15 to December 19, 2010 for all
2.9 million users belonging to the largest mobile operator, Digicel Haiti26. Research on
bias in population mobility estimates stemming from differential ownership of
mobile phones between socio-economic groups has been evaluated in Kenya, finding
only minor bias27. Mobile phone mobility patterns based on the mobile phone dataset
used in this study have previously been shown to approximate mobility patterns from
a representative survey of 2,500 households in the capital Port-au-Prince, Haiti,
during the same year (2010)28. S2 provides further details on the mobile operator
dataset.

Analyses. We used the mobile phone data to construct a mobility matrix Mphone, with

elements mphone
ij , indicating the average daily proportion of mobile phones relocating

from study area i to j, comparing their last registered location on day t with their last
registered location on day t-1. The mobility network built on the basis of Mphone

displays strong connectivity both between Port-au-Prince and large parts of the
country as well as between other urban areas and their surrounding countryside
(Fig. 1). We calculated the infectious pressure Pj(t), sustained by each study area j
during the period from October 21 (from seven days after the disease onset of the first
case in Haiti) to December 16, according to Eq. 1, in which ci(t) is the number of
reported cases in study area i on day t:

Pj tð Þ~
Xn

i,i=j

mphone
ij

X7

k~1

ci t{kð Þ
" #

ðEq:1Þ

We thus assumed that a) the number of infectious individuals in a study area was
proportional to the cumulative number of reported cases in the area during the
preceding seven days (approximating the generation time of cholera, see also S5 and
below)29,30 and b) the proportion of mobile phone movements between study areas
was representative of the movements of infectious persons between study areas.

For comparative purposes, we implemented a gravity model of population
mobility. Gravity models have previously been used to model mobility of infectious
persons in a large number of studies in Haiti and elsewhere8,16,17,31 and assume that
population mobility between areas depends positively on their population sizes and
negatively on the distance between them. We calculated the infectious pressure

according to Eq. 1, replacing mphone
ij by mgrav

ij using the following gravity model31.

mgrav
ij ~mi

Hje
{dij=dPn

k=i Hke{dik=d
ðEq:2Þ

in which mi is the average daily proportion of the population in area i that moves out of
the area. The remaining ratio is the estimated probability that an individual leaving
study area i, goes to study area j. Hj denotes the population in study area j, and dij

denotes the distance between the population-weighted centroids of study areas i and j.
In the absence of detailed mobility data, values for mi and d (the scaling parameter)

in Eq. 2 are unknown and needs to be assigned. Parameter values vary however widely
between studies. As appropriate values for Haitian mobility are unknown, we chose to
optimize the model based on the retrospective case data from the complete study
period. Note that this optimisation thus could not have been performed until after the
spatial spread of the epidemic was complete. Our comparison model thus performs
better than a model that could have been developed during the epidemic. We pro-
duced two separate optimisations. In the first we optimised the gravity model by
choosing values for mi and d (0.154 and 122 respectively), which minimised the
residual sum of squares between reported daily cholera cases in each study area and
the estimated pressure from the gravity model31. In the second we chose parameter
values (0.158 and 3.5 respectively) that maximised the area under the curve (AUC),
among all possible ROC curves. The ROC curve in this analysis depicts the sensitivity
and specificity, using increasing thresholds of infectious pressures, to predict out-
break occurrence32 (see Results and Fig. 2b). We denote infectious pressures calcu-
lated from mobile phone movements by Pphone and from the optimised gravity models
by Pgrav1 and Pgrav2, respectively (see S3).

Results
Outbreak risk. For an efficient response to a developing epidemic, it
is important to rapidly focus intervention resources to areas at

Figure 1 | Mobile phone mobility network. The average absolute number

of mobile phones moving between the study areas (October 15 to

December 19, 2010). Thicker, bluer lines indicate larger number of

travelers. The original outbreak location (Mirebelais), the Artibonite River

(dark blue) and Port-au-Prince (PAP) are depicted (visualisation using

Gephi and ArcGIS).
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highest risk. By utilizing data for all days of the study period, we
plotted the proportion of non-infected communes that experienced
an outbreak within seven days, for various intervals of infectious
pressure, Pphone (Fig. 2a). The risk of a study area experiencing a
new outbreak correlated closely with the infectious pressure. Over
a pressure level of 22 (Pphone), all areas (six study areas) experienced
outbreaks within seven days (see S5 for Pgrav1, Pgrav2 and sensitivity
analyses).

Sensitivity and specificity of outbreak predictions. Building upon
this strong correlation between infectious pressure and outbreak risk,
we created a binary test to predict an outbreak occurring within the
upcoming seven days, based solely on thresholds of infectious
pressure. We predicted an outbreak to occur at a given pressure
threshold) and plotted the corresponding sensitivity and specificity
of each threshold (Fig. 2b). We compared the model based on the
mobile operator mobility data (Pphone) with the gravity models (Pgrav1

and Pgrav2), for which Pgrav2 was optimised specifically to yield the
maximum possible area under the curve (AUC) in this analysis.
Comparing these ROC curves, the Pphone model clearly performs
better than the Pgrav1 model and slightly better than the Pgrav2

model, yielding a higher specificity for a given level of sensitivity.
Note that both gravity models rely on parameter optimisations that
could not have been performed until the epidemic spread was
completed. Analyses of ranks of infectious pressure yielded similar
results (S4). As the generation time of cholera in Haiti is uncertain
and may have deviated from the seven-day period assumed in this
study (Eq. 1)29, we additionally calculated infectious pressure based
on other time periods (three, five and nine days), which did not alter
the results (S5).

Early outbreak incidence. In addition to predicting the risk of a new
outbreak occurring in an area, an effective health care response
requires good estimates of the number of cases that are likely to
occur if an outbreak takes place. We may however expect the local
evolution of an epidemic, after its start, to be largely dependent on
local environmental and behavioural factors. One may thus
hypothesize that the infectious pressure leading to the seeding of
an outbreak would have little further influence on the number of
cases in an area. This did however not seem to be the case.

We correlated, for each newly infected area, the infectious pressure
sustained by the area at outbreak onset with the average daily number
of cases during the first D days of the new outbreak. For all values of D

from one to ten days, we found a linear correlation (r) of approxi-
mately 0.3 (Fig. 3). Correlation coefficients were significant (p ,

0.05) for all periods for the Pphone model and non-significant for all
10 periods for the Pgrav1 and the Pgrav2 model (one outlier excluded).

Discussion
Our results show that the risk of epidemic onset of cholera in a given
area and the initial intensity of local outbreaks could have been
anticipated during the early days of the Haitian epidemic using case
reports and the mobility patterns of mobile phones. We show that the
specificity and sensitivity of predictions of epidemic spread was
improved or comparable to currently available optimized mobility
models. Most importantly, the predictions based on the mobile oper-
ator data did not rely on retrospective optimization of parameter
models and could thus be available from the start of an outbreak.
This is important as gravity model parameters are highly context
specific33,34. These results indicate that outbreak preparedness and
response to epidemic agents, such as cholera, can be enhanced. The
findings may have particular importance for improving early con-

Figure 2 | (a) Relationship between infectious pressure, calculated from the mobile phone data (Pphone), and the risk of areas experiencing a new outbreak

within seven days. Ninety-five percent confidence intervals based on a binomial distribution are included. (b) ROC curve (sensitivity and specificity) for

predicting outbreak occurrence within seven days at increasing thresholds of infectious pressure (red: Pphone, green: Pgrav1, black: Pgrav2). Random guesses

would yield values along the diagonal line.

Figure 3 | Correlation (r) between infectious pressure at outbreak onset
and average daily number of reported cases during the first D days of the
outbreak (one to ten days from onset). Red: Pphone, solid green: Pgrav1, black:

Pgrav2.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8923 | DOI: 10.1038/srep08923 3



tainment efforts of emerging infectious diseases, such as high mor-
tality strains of pandemic influenza, and the response to vaccine-
preventable diseases, such as measles, in low-income settings.

Cholera is known to be disseminated not only via human move-
ment, but also by water and sometimes food contamination35. Even
stronger predictive power may thus be achieved for infectious agents
that exhibit exclusive person-to-person transmission. Furthermore,
in this study, we focused on an extremely large and rapid cholera
epidemic. It is likely that surveillance data would be more accurate
for a disease that exhibits obvious symptoms and longer generation
times, which may reduce reporting bias and delays. In particular,
mobile operator data may represent a powerful tool for the contain-
ment of measles, which exhibits a high mortality rate, is preventable
with vaccine, is readily identifiable based on simple clinical criteria
and displays a sufficiently long generation time. Mobile phone-based
connectivity matrices may also be very useful for early containment
of emerging infectious agents, such as the localized appearance of
high-mortality influenza strains with pandemic potential6. Mobile
operator data may be especially advantageous in settings where poor
road quality renders distance a weak measure of connectivity.

Access to operator data is a prerequisite for the future use of the
method. The study demonstrates however that for the purpose of
predicting future outbreaks, mobile phone operators may not need to
provide access to their complete customer databases, but rather only
to aggregated data on mobility between areas. Such aggregated con-
nectivity matrices can be made available for preparedness purposes
before outbreaks. They can then be repeatedly updated during the
outbreak response to take into account changes in population mobil-
ity, which would not be captured by a gravity model.

In newly infected areas, infectious pressure based on the mobile
phone model (but not gravity models) correlated positively with
initial incidence. The correlation between mobility and initial incid-
ence was unexpected as cholera transmission depends on a number
of local socio-economic and environmental conditions. There may
either be a causal connection between mobility and outbreak size (if
rapid outbreaks were caused by multiple seeding events), alterna-
tively areas between which there is high mobility may have envir-
onmental and behavioural similarities. Although the findings
indicate an important new use of mobility data, a policy relevant tool
for predicting early case numbers thus needs to incorporate addi-
tional variables to strengthen correlations.

Some study limitations should be noted. Reporting errors and
delays are likely to have occurred in the case data and may have
reduced the predictive accuracy for both the phone and gravity mod-
els. This will also be the case in future applications of the method. The
case data in the study should be interpreted as reflecting relative
rather than absolute differences in case load per area, as the
Haitian cholera reporting system excluded asymptomatic and mild
infections, as well as some severely ill patients who did not reach
health facilities36.

Short-range movements may be under-recorded in the mobile
data since they take place over shorter time intervals. However,
weighting short and long-term movements differently did not
change the prediction results (S5). Frequency of mobile phone use
varies throughout the country and differential mobility between
phone and non-phone users may exist. Studies evaluating bias in
mobility estimates based on mobile operator data do however pro-
vide strong support for operator data being the currently best mea-
sure of nationwide mobility patterns27,28,37. Although this study
focuses only on the influence of human mobility, future mobile
phone based models focusing on cholera may benefit from including
data on spatial distributions of access to water and sanitation38, bac-
terial transmission via waterways31, agricultural practices39, differ-
ential population immunity levels40 and interactions between
infectiousness and mobility and between infectiousness and phone
use.

In summary, the results show that mobile phone mobility patterns
in Haiti during the 2010 cholera outbreak enabled predictions of
epidemic spread, which did not require retrospective optimization
of parameter models and could thus be available at outbreak onset.
The results imply that anonymous mobile phone data may represent
a key data source to both increase our understanding of the mechan-
isms underlying the spatial spread of infectious agents and provide
an important policy-relevant tool for future outbreak preparedness
and response efforts.
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