R. Abeti, A. Y. Abramov, and M. R. Duchen, ??-amyloid activates PARP causing astrocytic metabolic failure and neuronal death, Brain, vol.134, issue.6, pp.1658-1672, 2011.
DOI : 10.1093/brain/awr104

URL : http://doi.org/10.1093/brain/awr104

R. Abeti and M. R. Duchen, Activation of PARP by oxidative stress induced by beta-amyloid: implications for Alzheimer's disease, 2012.

E. Isopi, A. Granzotto, C. Corona, M. Bomba, D. Ciavardelli et al., Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology, Neurobiology of Disease, vol.81, 2014.
DOI : 10.1016/j.nbd.2014.11.013

K. K. Kao and M. P. Fink, The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds, Biochemical Pharmacology, vol.80, issue.2, 2010.
DOI : 10.1016/j.bcp.2010.03.007

J. Y. Lee, Y. H. Kim, and J. Y. Koh, Protection by pyruvate against transient forebrain ischemia in rats, J. Neurosci, vol.21, p.171, 2001.

Y. Ma, H. Chen, X. He, H. Nie, Y. Hong et al., NAD+ Metabolism and NAD+-Dependent Enzymes: Promising Therapeutic Targets for Neurological Diseases, Current Drug Targets, vol.13, issue.2, pp.222-229, 2012.
DOI : 10.2174/138945012799201711

A. Melo, L. Monteiro, R. M. Lima, D. M. Oliveira, M. D. Cerqueira et al., Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives, Oxidative Medicine and Cellular Longevity, vol.32, issue.3, pp.467180-467190, 2011.
DOI : 10.1038/nrd3480

R. Minkeviciene, S. Rheims, M. B. Dobszay, M. Zilberter, J. Hartikainen et al., Amyloid ??-Induced Neuronal Hyperexcitability Triggers Progressive Epilepsy, Journal of Neuroscience, vol.29, issue.11, pp.3453-3462, 2009.
DOI : 10.1523/JNEUROSCI.5215-08.2009

P. D. Mongan, J. Karaian, B. M. Van-der-schuur, D. K. Via, and P. Sharma, Pyruvate prevents poly-ADP ribose polymerase (PARP) activation, oxidative damage, and pyruvate dehydrogenase deactivation during hemorrhagic shock in swine, Journal of Surgical Research, vol.112, issue.2, pp.180-188, 2003.
DOI : 10.1016/S0022-4804(03)00148-3

F. Moroni, A. J. Chiarugi, J. J. Palop, and L. Mucke, Post-ischemic brain damage: targeting PARP-1 within the ischemic neurovascular units as a realistic avenue to stroke treatment A perfect storm: converging paths of epilepsy and Alzheimer's dementia intersect in the hippocampal formation Epilepsy and cognitive impairments in Alzheimer disease, FEBS J. Epilepsia Arch. Neurol, vol.276, issue.66, pp.36-45, 2009.

M. A. Satchell, X. Zhang, P. M. Kochanek, C. E. Dixon, L. W. Jenkins et al., A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test, J. Neurochem. J. Emerg. Trauma Shock, vol.854103, issue.2, pp.697-708, 2003.

P. K. Shetty, M. P. Sadgrove, F. Galeffi, T. , and D. A. , Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation, Neurobiology of Disease, vol.45, issue.1, pp.177-187, 2012.
DOI : 10.1016/j.nbd.2011.08.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224180

K. A. Simeone, S. A. Matthews, K. K. Samson, and T. A. Simeone, Targeting deficiencies in mitochondrial respiratory complex I and functional uncoupling exerts anti-seizure effects in a genetic model of temporal lobe epilepsy and in a model of acute temporal lobe seizures, Experimental Neurology, vol.251, pp.84-90, 2014.
DOI : 10.1016/j.expneurol.2013.11.005

J. A. Smith, S. Park, J. S. Krause, and N. L. Banik, Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration, Neurochemistry International, vol.62, issue.5, pp.764-775, 2013.
DOI : 10.1016/j.neuint.2013.02.013

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends in Endocrinology & Metabolism, vol.23, issue.9, 2012.
DOI : 10.1016/j.tem.2012.06.005

S. W. Suh, K. Aoyama, Y. Matsumori, J. Liu, and R. A. Swanson, Pyruvate Administered After Severe Hypoglycemia Reduces Neuronal Death and Cognitive Impairment, Diabetes, vol.54, issue.5, pp.1452-1458, 2005.
DOI : 10.2337/diabetes.54.5.1452

V. I. Teichberg, K. Cohen-kashi-malina, I. Cooper, and A. Zlotnik, Homeostasis of glutamate in brain fluids: An accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies, Neuroscience, vol.158, issue.1, pp.301-308, 2009.
DOI : 10.1016/j.neuroscience.2008.02.075

S. Waldbaum and M. Patel, Mitochondria, oxidative stress, and temporal lobe epilepsy, Epilepsy Research, vol.88, issue.1, pp.23-45, 2010.
DOI : 10.1016/j.eplepsyres.2009.09.020

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236664

Y. Wang and Z. H. Qin, Molecular and cellular mechanisms of excitotoxic neuronal death, Apoptosis, vol.10, issue.11, pp.1382-1402, 2010.
DOI : 10.1007/s10495-010-0481-0

W. Ying, Y. Chen, C. C. Alano, and R. A. Swanson, Tricarboxylic Acid Cycle Substrates Prevent PARP-Mediated Death of Neurons and Astrocytes, Journal of Cerebral Blood Flow & Metabolism, vol.263, pp.774-779, 2002.
DOI : 10.1097/00004647-200207000-00002

M. Zilberter, A. Ivanov, S. Ziyatdinova, M. Mukhtarov, A. Malkov et al., Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer's disease, Journal of Neurochemistry, vol.31, issue.Suppl 1, pp.157-171, 2013.
DOI : 10.1111/jnc.12127

A. Zlotnik, B. Gurevich, E. Cherniavsky, S. Tkachov, A. Matuzani-ruban et al., The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate, Neurochem. Res, vol.33, 2008.