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1Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09,

France
2Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U1191,
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SUMMARY

Cutaneous C-unmyelinated MRGPRD+ free nerve
endings and C-LTMRs innervating hair follicles
convey two opposite aspects of touch sensation: a
sensation of pain and a sensation of pleasant touch.
The molecular mechanisms underlying these dia-
metrically opposite functions are unknown. Here,
we used a mouse model that genetically marks C-
LTMRs and MRGPRD+ neurons in combination with
fluorescent cell surface labeling, flow cytometry,
and RNA deep-sequencing technology (RNA-seq).
Cluster analysis of RNA-seq profiles of the purified
neuronal subsets revealed 486 and 549 genes differ-
entially expressed in MRGPRD-expressing neu-
rons and C-LTMRs, respectively. We validated 48
MRGPD- and 68 C-LTMRs-enriched genes using a
triple-staining approach, and the Cav3.3 channel,
found to be exclusively expressed in C-LTMRs, was
validated using electrophysiology. Our study greatly
expands the molecular characterization of C-LTMRs
and suggests that this particular population of neu-
rons shares some molecular features with Ab and
Ad low-threshold mechanoreceptors.

INTRODUCTION

Skin is the largest sensory organ of the body and is densely

equipped with highly specialized sensory nerve endings

capable of sensing a wide range of sensory stimuli such

as light touch, mechanical pressure, temperature, itch, and

pain. These cutaneous sensory afferents can be distinguished

by many morphological, anatomical, electrophysiological, and

molecular criteria (Liu and Ma, 2011; Owens and Lumpkin,

2014). For example, based on their cell body size, degree of

myelination, and axonal conduction velocity, cutaneous fibers

can be split into Ab, Ad, or C-fibers (Abraira and Ginty, 2013;

Bessou and Perl, 1969; Li et al., 2011; Smith and Lewin,

2009; Zimmermann et al., 2009). C-fibers represent the major-

ity of cutaneous sensory afferents. They can be split into free
Cell R
nerve endings, found both in glabrous and hairy skin where

they are embedded between the keratinocytes of the epi-

dermis, and a particular population of C-unmyelinated fibers,

found exclusively in hairy skin where they form longitudinal

lanceolate endings around hair follicles (Delfini et al., 2013; Li

et al., 2011) or terminate in large arborizations similar to C-fiber

tactile afferent receptive fields (Liu et al., 2007; Vrontou et al.,

2013). Cutaneous free nerve endings are tuned to respond to

itch-inducing compounds and pain-evoking thermal, mechani-

cal, and chemical stimuli (Zimmermann et al., 2009). MRGPRD

free nerve endings belong to a subset of non-peptidergic noci-

ceptors that convey noxious mechanical and b-alanin-induced

itch stimuli (Cavanaugh et al., 2009; Liu et al., 2012), whereas

C-low-threshold mechanoreceptors (C-LTMRs) have been pro-

posed to contribute to light touch under normal conditions

(Bessou et al., 1971; Douglas and Ritchie, 1957; Johansson

et al., 1988; Li et al., 2011; Löken et al., 2009; Maruhashi

et al., 1952; Olausson et al., 2002; Seal et al., 2009; Zotterman,

1939) and to touch hypersensitivity after injury (Delfini et al.,

2013; Liljencrantz et al., 2013; Seal et al., 2009). Our knowl-

edge of the molecular contents that contribute to the functional

specialization of these diametrically different subpopulations of

cutaneous afferents is still at its infancy. In a recent study (Gail-

lard et al., 2014), we identified a novel Ga inhibitory interacting

protein (GINIP) that marks two distinct subsets of non-pepti-

dergic neurons: the cutaneous free nerve endings MRGPRD+

neurons (Dong et al., 2001) and the V-GLUT3-, TH-, and

TAFA4-expressing C-LTMRs (Delfini et al., 2013; Li et al.,

2011; Seal et al., 2009). Here, we took advantage of the GI-

NIPm-Cherry mouse model in combination with isolectin B4

(IB4) cell surface staining and fluorescence-activated cell sort-

ing (FACS). We succeeded to purify three distinct populations

of DRG neurons and subjected their respective total RNA con-

tents to RNA deep-sequencing technology (RNA-seq). As ex-

pected, GINIP+/IB4+ neurons showed a remarkable enrichment

in Mrgprd transcripts and GINIP+/IB4� neurons revealed a

striking enrichment of the three known markers of C-LTMRs:

Tafa4, Th, and Vglut3. Deeper comparison of the RNA-seq

data revealed distinct transcriptional signatures between

MRGPRD-expressing neurons and C-LTMRs that were further

confirmed by in situ hybridization analysis of over 100 genes.

Most importantly, in addition to providing the transcriptional
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signatures of two categories of primary sensory neurons, our

study expands the molecular characterization of C-LTMRs

and suggests that this particular subset of primary sensory

neurons shares many molecular features of LTMRs. As a

functional readout, we used electrophysiological recording to

unravel the specific and exclusive functional expression of

the low-voltage-gated Ca2+ channel Cav3.3 in C-LTMRs,

where it very likely plays a key role in shaping their functional

specialization.

RESULTS

Combination of GINIP and IB4 Staining Segregates Four
Non-overlapping Classes of DRG Neurons
In a recent study, we generated a mouse model that expresses

the fluorescent protein m-Cherry from the Ginip locus (Gaillard

et al., 2014). Double-labeling experiments using anti-GINIP

antibody in combination with IB4 staining showed that DRG

neurons can be split into four distinct categories: GINIP+/

IB4+; GINIP+/IB4�; GINIP�/IB4+; and GINIP�/IB4� neurons.

The GINIP+/IB4+ double-positive (DP) population corresponds

to the cutaneous free nerve endings MRGPRD+ neurons (Fig-

ures 1A and 1B), the GINIP+/IB4� population corresponds to

TAFA4-expressing C-LTMRs (Figures 1A and 1B), the GINIP�/
IB4+ population contains the 20% remaining IB4+ neurons (Fig-

ure 1A), and the GINIP�/IB4� double negative (DN) neurons

represents a heterogeneous population of neurons composed

of peptidergic nociceptors, a subset of Ret+ neurons and

TrkB+ and TrkC+ neurons (Figure 1A). As GINIPm-Cherry mouse

model allows high-fidelity expression of m-Cherry in GINIP+

neurons, we sought to combine live m-Cherry fluorescence

with IB4 cell surface staining and FACS to purify the four cate-

gories of DRG cells (Figures 1C and 1D). Cell suspensions were

obtained from acutely dissociated DRGs, pooled from six GI-

NIPm-Cherry mice. Neurons with a cell body size above 70 mm

were eliminated by filtering the suspension, and axonal debris

was removed by using a Percoll gradient. Negative gating

was used to exclude dead or dying cells that incorporated Sy-

tox Blue dye and cells that were autofluorescent in V500 chan-

nel (Figures 1C and S1). Next, we gated on m-Cherry-positive

and m-Cherry-negative cells that we further subdivided into

IB4+ and IB4� subsets (Figures 1C and S1). FACS-sorted

IB4+ and IB4� m-Cherry-positive neurons gave rise to expected

proportions of cells: about two-thirds were IB4+ (corresponding

to GINIP+/IB4+) and the remaining one-third was IB4� (corre-

sponding to GINIP+/IB4�; Figure 1D). The m-Cherry�/IB4+ sub-

set was excluded from the transcriptional analysis, because it

was highly contaminated by Cd31 (Pecam)-expressing endo-

thelial cells, consistent with IB4 binding on this cell type (data

not shown). For the remaining three sorted samples (hereafter

called DP for the GINIP+/IB4+, C-LTMRs for the GINIP+/IB4�,
and DN for GINIP�/IB4�), we first confirmed by RT-PCR the

accurate expression of Ginip and m-Cherry transcripts (Fig-

ure S2B) and then extended the purity evaluation by analyzing

the expression of Mrgprd, Tafa4, TrkA, and Trpv1 in each

sorted sample (Figure S2C). As expected, Mrgprd transcripts

were highly detected in the DP sample but low in the two

others, whereas Tafa4 expression was high in C-LTMRs. TrkA
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and Trpv1 transcripts were enriched in the DN sample, consis-

tent with the enrichment in peptidergic nociceptors in the DN

fraction (Figure S2C).

RNA Sequencing
High-quality RNA (Figure S2A) was extracted from the three

purified populations of neurons, and their respective transcrip-

tional profiles were generated using RNA-seq. After one round

of RNA amplification, libraries were built in biological duplicate

and sequenced in 100-bp paired-end cycles using the Illumina

HiSeq2000 system with SBS technology. Image analysis and

base calling were performed using the HiSeq Control Software

and RTA component from Illumina. This approach yielded be-

tween 40 and 50 millions of reads that were further submitted

to sequence mapping on mouse reference genome mm10 with

CASAVA 1.8.2 software. After removal of contaminants (28S,

18S, and 5S rRNA; mitochondrial chromosomes; PhiX; Illumina

controls; and Illumina adaptors), reads mapping to multiple

splicing positions, and reads with no match, we obtained be-

tween 32 and 42 millions of reads that were used for the gener-

ation of the raw data file (Table S1).

Among the first-ranked genes in the raw data file, we found

genes known to be related to structural organization of neu-

rons such as Tuba1a, Prph, Sncg, and Mtap1b (Table S2). All

these genes exhibited strong expression in the three sorted

samples, as they generated at least 50,000 reads (Table S2).

Accordingly, they were highly and broadly expressed in DRG

neurons in Allen-Brain Atlas database. Interestingly, genes

associated with cellular stress such as Hsp90ab1 and Fos

were also highly expressed in all samples, very likely due to

the cell dissociation and FACS process (Table S2). Most

importantly, quick analysis of the reads per kilobase per million

of reads (RPKM) generated for genes expected to be enriched

in each sorted subpopulation revealed high enrichment of

Mrgprd and P2rx3 in the DP subset, Th and Tafa4 in C-LTMRs,

and Cgrp and Sp in the DN neurons (Figure 1E), providing the

first proof of concept of the successful outcome of our exper-

imental paradigm.

To identify genes that were preferentially enriched in one sam-

ple, we carried a pairwise comparative analysis (2-fold enrich-

ment; p < 0.01) after libraries normalization with the trimmed

mean of M values method (TMM) (provided by EdgeR statistical

package). Genes that generated less than ten reads were

excluded from statistical analysis. Then, for each subset, we ex-

tracted the list of genes that were upregulated in one subset as

compared to the two others. We found 486 genes enriched in

DP subset, 549 in C-LTMRs, and 2,916 in DN subset (Tables

S3, S4, and S5). These genes encode a variety of molecules

including ion channels, receptors, signaling molecules, and pre-

viously uncharacterized genes.

In Situ Hybridization Validation of RNA-Seq Data Sets
Because not all neuronal subsetswere included in our FACSstrat-

egy and because FACS of acutely dissociated neurons may

induce cellular stress that impacts on gene expression, the only

follow-up strategy that could be employed to validate the speci-

ficity of our data sets was in situ hybridization (ISH) approach on

fixed adult DRG sections. Knowing that we might miss genes
ors



Figure 1. FACS for Transcriptomic Analysis of Three Distinct Subsets of DRG Neurons Based on GINIP Expression and IB4 Labeling

(A) Schematic proportional representation of GINIP+ subset with respect to main molecularly defined DRG subsets.

(B) ISH using antisense probes forMrgprd (in red, top) and Tafa4 (in red, bottom), followed by immunostaining with rat anti-GINIP antibody (in blue) and labeling

with Alexa-488-conjugated IB4 (in green). Filled arrowheads showGINIP+/IB4+/Mrgprd+ neurons, and empty arrowheads showGINIP+/IB4�/Tafa4+ neurons. The
scale bars represent 50 mm.

(C) FACS dot plots showing the FACS strategy using GINIPm-Cherry mouse and IB4 labeling; m-Cherry/GINIP� cells (1) and m-Cherry/GINIP+ cells (2) were further

separated into (1) IB4+m-Cherry� and IB4�m-Cherry� (DN) cells and (2) IB4+m-Cherry+ (DP) and IB4�m-Cherry+ (C-LTMRs) (see also Figure S1).

(D) Schematic representation of sorted samples according to m-Cherry/GINIP expression and IB4 binding; the mean numbers of sorted cells are shown

underneath each subset (n = 2).

(E) Shows the reads per kilobase per million reads (RPKM) obtained forMrgprd, P2rx3 (left), Th, Tafa4 (middle), Calca (Cgrp), and Tac1 (Sp) in DP, C-LTMRs, and

DN subsets (see also Figure S2).
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Figure 2. Specific Transcriptional Profiles of DP, C-LTMRs, and DNSubsets and Expression Patterns of DP-Enriched Genes in DRGNeurons
(A) Shows smear plots representing pairwise comparison of normalized RNA-seq data using TMMmethod; fold change (FC)R 2; p < 0.01. Only transcripts that

generated R1,000 reads in the experimental replicates (n = 2) were kept for the analysis. The log FC is plotted against the log of tag concentration (counts per

million [CPM]) obtained for each gene, after normalization. Genes differentially expressed are shown in red.

(B) Schematic representation of the number of genes declared to be enriched (FCR 2; p < 0.01) in one subset with respect to the two others (see also Tables S6,

S7, and S8).

(C–E) Representative expression patterns of DP-enriched genes assessed by ISH using antisense probes for indicated transcripts (in red), followed by immu-

nostaining with rat anti-GINIP antibody (in blue) and Alexa-488-conjugated IB4 (in green) labeling. Plain arrows, DP neurons (GINIP+IB4+); empty arrowheads,

GINIP�IB4+; double arrows, large-size neurons. Note that transcripts expressed outside DP subset (D and E) mark large-size neurons (double arrows) but are not

expressed within C-LTMRs (GINIP+IB4�). The scale bars represent 50 mm (see also Figure S3 for DN-enriched genes).
that are expressed in subsets of our sorted neuronal subpopula-

tions,weassumed that, below1,000number of reads, transcripts’

detection by ISH would be difficult to monitor. Therefore, we car-

ried out a second pairwise comparative analysis by considering

only the genes with values above 1,000 reads (Figure 2A). As a

result, we obtained 156 transcripts preferentially expressed in

theDPsubset, 184 inC-LTMRs,and784 in theDNpopulation (Fig-
1010 Cell Reports 10, 1007–1019, February 17, 2015 ª2015 The Auth
ure 2B; TablesS6, S7, andS8).We thenmonitored the expression

of 48DP-, 68C-LTMRs-, and13DN-enrichedgenes using ISH fol-

lowed by GINIP immunostaining and IB4 labeling (for the DP and

C-LTMRs candidate genes) or GINIP and TrkA immunolabeling

(for the DN candidate genes). These triple-labeling experiments

provided an unambiguous and accurate expression pattern of

each tested gene. The 13 DN-enriched tested genes revealed
ors



Figure 3. Six Novel Genes Are Exclusively

Expressed in C-LTMRs Neurons

(A–F) ISH using Ceacam10, C1ql4, Wfdc2, Fbp2,

Cacana1i, and Bok antisense probes (in red) fol-

lowed by immunostaining with rat anti-GINIP

antibody (in blue) and Alexa-488-conjugated IB4

(in green). Note that probe reactivity is detected

only in C-LTMRs expressing GINIP (blue), but not

IB4 (green), as indicated by the arrows. The scale

bars represent 50 mm.

(G) Shows the percentage of C-LTMRs co-ex-

pressing each gene (mean ± SD; n = 3).
twodifferent expressionpatterns: genesmainly expressed in neu-

rons and genes exclusively expressed in non-neuronal cells that

harbor satellite and/or glial cell morphology (Figure S3). In agree-

ment with our RNA-seq data, genes expressed in neurons were

excluded fromDPneurons andC-LTMRs. Furthermore, we found

6/13 genes expressed in TrkA+ peptidergic neurons and others

(2/13) excluded from this neuronal population, revealing the het-

erogeneity of the DN subset (Figure S3).

Because the aim of this study consisted at deciphering the

transcriptional signatures that confer the functional specializa-

tions of MRGPRD-expressing cutaneous free nerve ending and

C-LTMRs, we analyzed the expression patterns of 48 DP-en-

riched genes and 68 C-LTMTRs-enriched genes.

In line with our RNA-seq data sets, the 48 DP-enriched probes

were highly expressed in the DP neurons and virtually excluded

from C-LTMRs (http://www.ibdm.univ-mrs.fr/equipes/reynders/

DP-ISHlibrary.pptx). However, the vast majority of the DP-

enriched genes displayed an additional expression pattern

outside DP neurons. 12 genes showed some expression in few

GINIP�/IB4+ neurons, 17 genes showed lower expression in

discrete subsets of small (3/17) or medium-to-large size neurons
Cell Reports 10, 1007–1019, F
(14/17), and 19 genes were expressed in

broader neuronal subsets in addition to

intense expression in DP neurons (Fig-

ures 2C–2E; DP-ISH library).

The same strategy applied to C-

LTMRs-enriched genes showed that all

68 tested genes were expressed in

C-LTMRs and massively excluded from

DP neurons (http://www.ibdm.univ-mrs.

fr/equipes/reynders/CLTMRs-ISHlibrary.

pptx). One striking feature of C-LTMRs-

enriched genes is that the vast majority

was also expressed in medium-to-

large size DRG neurons, whereas only

two were expressed in small neurons.

Indeed, out of the 68 tested genes, six

were specifically expressed in C-LTMRs,

as they only marked a subset of GINIP+

neurons that do not bind IB4 (Figures

3A–3F). Quantitative analyses showed

that Ceacam10 is expressed in 71.2% ±

6.3% of C-LTMRs, Wfdc2 in 73.4% ±

1.7%, Cacna1i in 89.2% ± 5.9%, C1ql4

in 70% ± 1.8%, Fbp2 in 19.9% ± 4.7%,
and Bok in 62.7% ± 6.4% of C-LTMRs (Figure 3G), further high-

lighting our previously suggested molecular heterogeneity of

this particular class of neurons (Delfini et al., 2013). The remaining

60 genes could be split in three categories: 18 genes exhibited

high expression in C-LTMRs but also marked a discrete subset

of large-diameter neurons, 23 genes showed equal levels of

expression in C-LTMRs and in large-diameter neurons, and 19

genes exhibited a very high enrichment in larger-diameter neu-

rons and a discrete expression in C-LTMRs (Figures 4A–4C;

CLTMRs-ISHlibrary). Because 88% of C-LTMRs-enriched genes

displayed an additional expression preferentially in large-diam-

eter neurons, we sought to unravel themolecular identity of these

neurons. To do so, we performed double ISH using NF200 anti-

sense probe in combination with selected C-LTMRs-enriched

probes followed by TrkA immunolabeling. This triple-staining

experiment showed that all the selected probes were massively

excluded from TrkA+ peptidergic neurons and expressed in sub-

sets of NF200+ neurons (Figure S4). Knowing that NF200 is a hall-

mark of proprioceptors and LTMRs (Bourane et al., 2009; Li et al.,

2011; Luo et al., 2009; Wende et al., 2012), these data suggest

that C-LTMRs share some molecular features of LTMRs.
ebruary 17, 2015 ª2015 The Authors 1011
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Figure 4. C-LTMRs-Enriched Genes Exhibit Heterogeneous

Expression Patterns in DRG Neurons

(A–C)RepresentativeexpressionpatternsofCLTMRs-enrichedgenesassessed

by ISH using anti-sense probes for indicated transcripts (in red) followed by

immunostaining with rat anti-GINIP antibody (in blue) and Alexa488-conjugated

IB4 (in green) labelling.

(A) A representative gene highly expressed in C-LTMRs and in a discrete

subset of large neurons.

(B) A gene highly expressed in C-LTMRs and in a broad subset of large neurons.

(C) A representative gene massively expressed in large diameter neurons and

low expression in C-LTMRs. Filled arrowheads represent C-LTMRs neurons

(GINIP+IB4�) and double arrows represent large-size neurons. Scale bars

represent 50 mm (see also Figure S4).
MRGPRD-Expressing Cutaneous Free Nerve Ending
Neurons and C-LTMRs Exhibit Distinct Transcriptional
Profiles
MRGPRD-expressing neurons and C-LTMRs exhibit funda-

mental differences both at anatomical and functional levels.

However, little is known about the molecular contents that

instruct their respective functional specializations. In line with

this, we pooled DP and C-LTMRs-enriched genes according to

their biological functions by searching for statistically over-repre-

sented associations with Gene Ontology (GO) terms, using GOr-

illla database (Figures 5, 6, andS5). This analysis yielded, respec-

tively, 20 and 33 functional annotations for DP and CLTMRs. DP

neurons exhibited a high enrichment inG-protein-coupled recep-

tors as well as in transcripts encoding signaling molecules, such

as Gna14, Gna1, Gnaq, Plcb3, Prkca, Prkcd, and Prkcq (Figures

5A and S5A; Table S9), whereas C-LTMRs exhibited a striking
1012 Cell Reports 10, 1007–1019, February 17, 2015 ª2015 The Auth
enrichment in transcripts associated with voltage-gated ion

channel activity (Figures 6A and S5B; Table S10).

Detailed analysis of genes associated with G protein receptor

binding and signal transducer activity led to the identification

of two transcripts encoding for G-protein-coupled receptors,

namely the angiotensin receptor type 1a (Agtr1a) and the prosta-

glandin receptor D2 (Ptgdr) (Figure 5A). Our ISH experiments

showed that Agtr1a is expressed in DP neurons, but not in C-

LTMRs or other subsets of DRG neurons (Figure 5B), whereas

Ptgdr was found at higher intensity in DP neurons compared to

C-LTMRs and large-size neurons (Figure 5C). In addition to

GPCRs, GO analysis revealed a striking enrichment of tran-

scripts encoding signaling molecules in DP neurons, including

Gna14, Gna1, Gnaq, Plcb3, Prkca, Prkcd, and Prkcq (Table

S9). Our in situ screen showed that all these transcripts were

highly expressed in DP neurons and virtually absent in C-LTMRs

(Figures 5D–5G). The restricted enrichment of such number of

signaling molecules likely endows DP neurons with the molecu-

lar machinery required to sense and transduce injury-induced

pain hypersensitivity.

Regarding C-LTMRs, one of the most striking observations

with respect to the GO analysis was the high enrichment in tran-

scripts associated with voltage-gated ion channel activity. Other

physiologically pertinent functional annotations encompass sub-

strate-specific channel, ion transmembrane transporter, and G-

protein-coupled receptor activities (Figures 6A and S5B).

Voltage-gated ion channels included potassium channels

(Kcnq2, Kcnj12, Kcnv1, Kcna2, and Kcna4), sodium channels

and associated beta subunits (Scn1a, Scn1b, Scn3b, Scn4b,

Scn7a, and Scn8a), and low-voltage activated calcium channels

(Cacna1h and Cacna1i; Figures 6A and S5B; Table S10). ISH

screen showed that Cacna1i is specifically expressed in C-

LTMRs (Figure 3C) and Kcnj12 and Cacna1h are expressed in

C-LTMRs as well as in some large-diameter neurons but

excluded from DP neurons (Figures 6B and 6C). Scn4b and

Scn8a exhibited low expression in C-LTMRs, very high expres-

sion in myelinated large neurons, and no detectable signal in

DP neurons (C-LTMRs-ISH library, slides 67 and 68). The combi-

natorial enrichment of such channels in C-LTMRs is likely to

explain the tonic and repetitive firing properties of this particular

class of neurons (Delfini et al., 2013; Li et al., 2011).

Interestingly, substrate-specific channels/ion transmembrane

transporters encompassed anoctamin 6 (Ano6) and solute carrier

17a2 (Slc17a2).Ano6 is part of outwardly rectifying chloride chan-

nels (Martins et al., 2011), andSlc12a7 encodes for theK+/Cl� co-

transporter Kcc4 (Boettger et al., 2002), suggesting that both

channels could be involved in membrane excitability. In situ anal-

ysis of Ano6 and Slc12a7 showed that both transcripts were ex-

pressed in C-LTMRs, but not in DP neurons, and exhibited

some expression in large DRG neurons (Figures 6D and 6E).

GPCR-activity-related transcripts were also represented in GO

analysis of C-LTMRs data set, including cholecystokinin receptor

A (Cckar) andpurinergic receptor y1 (P2ry1). Our ISHdatashowed

that both Cckar and P2ry1 transcripts were highly enriched in C-

LTMRs, totally excluded fromDPneurons, and displayed expres-

sion in some large-diameter neurons (Figures 6F, 6G, and S4B).

Together, our data provide a functional description of sets

of genes differentially expressed in DP versus C-LTMRs. The
ors



Figure 5. Functional Categories of DP-En-

riched Genes

(A) Four out of 20 Gene Ontology functional an-

notations obtained upon analysis of DP-enriched

data set using GOrilla database ranked from the

most (top) to the least (bottom) statistically repre-

sentative (p < 10�3). Part of the associated genes

is listed in italics, and genes depicted in ISH ex-

periments are shown in red (see also Figure S5 and

Table S9).

(B–G) ISH using antisense probes for Agtr1a (B),

Ptgdr (C), Gna14 (D), Plcb3 (E), Prkcq (F), and

Prkca (G) are shown in red, immunostaining with

rat anti-GINIP antibody is shown in blue, and

Alexa-488-conjugated IB4 labeling is shown in

green. Insets highlight (1) DP (GINIP+IB4+) and (2)

C-LTMRs (GINIP+IB4�). The scale bars represent

50 mm.
differential expression of such clusters of genes likely contrib-

utes to differences in signal transduction, intrinsic membrane

excitability, and the firing properties of C-LTMRs andMRGPRD+

neurons. Our data also provide a predictive basis for deciphering

the mechanisms by which specific external stimuli and down-

stream-associated signaling pathways fine-tune the activity of

these two neuronal subsets.

C-LTMRs Express Two Functionally Distinct Low-
Voltage-Activated Calcium Channels
Our RNA-seq data revealed high enrichment ofCacna1h (Cav3.2)

and Cacna1i (Cav3.3) in C-LTMRs. Our ISH showed that tran-

scripts encoding both channels were expressed in C-LTMRs

with Cav3.3 being exclusively expressed in this neuronal subset

(Figures 3E and 7A). To explore whether both channels were

functional in C-LTMRs, we used whole-cell patch-clamp record-

ings on primary culture of heterozygous m-Cherry-expressing

neurons in the presence of Alexa 488 IB4 live staining to distin-

guish betweenC-LTMRs andDP neurons. In ionic conditions de-

signed to isolate calcium currents, current-voltage relationships

showed inward low-voltage-activated (LVA) and high-voltage-
Cell Reports 10, 1007–1019, F
activated (HVA) currents in all recorded

C-LTMRs soma, confirming the system-

atic presence of T-type currents in these

neurons (Figures 7B and 7C). In sharp

contrast, DP neurons did not express

any LVA current in agreement with the

absence of Cav3 transcripts in this popu-

lation (Figures 7Band7C). To testwhether

Cav3.2 and Cav3.3 were functional in C-

LMTRs, we took advantage of Cav3.2

high sensitivity to nickel ions (Ni) (Lee

et al., 1999). Blockade of T-type calcium

currents in C-LTMRs by low concentra-

tion of Ni (30 mM) revealed a Ni-insensitive

current with slow kinetics of activation

and inactivation typical of Cav3.3 channel

(Figure 7D; Chemin et al., 2002). In

contrast, the Ni-sensitive fraction ob-
tained by subtraction revealed faster kinetics with an explicit

criss-cross pattern typical of Cav3.2 (Figure 7D). To date, zinc

(Zn) is the only available pharmacological tool that interferes

with the gating kinetics of Cav3.3 (Cataldi et al., 2007; Traboulsie

et al., 2007). After blockade of Cav3.2-like fraction by Ni, subse-

quent application of Zn (100 mM) slowed down the remaining

native Cav3.3-like current with a prominent slowing of the deacti-

vation (Figure 7E). Analysis of several C-LTMR soma revealed

that Cav3.3-like currents account for a third of the total amplitude

of C-LTMRs T-type calcium currents (Figure 7F). The dramatic

slowdown of the deactivation kinetics by Zn further shows that

Cav3.3 is a unique feature in the portfolio of ion channels specific

to C-LTMRs (Figure 7G). To test whether these two T-type cal-

cium channel isoforms impact C-LTMR excitability, we per-

formed current-clamp experiments. In neurons, T-type calcium

channels are well known to generate rebound low-threshold

spikes (LTS) following a transient hyperpolarization. In C-LTMRs,

membrane depolarization triggered small LTS when the mem-

brane is held at more and more negative values (Figure 7H). Inhi-

bition of Cav3.2 by Ni (50 mM) did not significantly alter LTS and

action potential (AP) threshold, whereas potentiation of Cav3.3
ebruary 17, 2015 ª2015 The Authors 1013



Figure 6. Functional Categories of C-

LTMRs-Enriched Genes

(A) Four out of 33 Gene Ontology functional cate-

gories obtained upon analysis of C-LTMRs-en-

riched data set using GOrilla software ranked from

the most (top) to the least (bottom) statistically

representative (p < 10�3). Part of the associated

genes is listed in italics; and genes depicted in ISH

experiments are shown in red (see also Figure S5

and Table S10).

(B–G) ISH using antisense probes for Kcnj12 (B),

Cacna1h (C), Ano6 (D), Slc12a7 (E), Cckar (F), and

P2ry1 (G) are shown in red, immunostaining with

rat anti-GINIP antibody is shown in blue, and

Alexa-488-conjugated IB4 labeling is shown in

green. Insets highlight (1) C-LTMRs (GINIP+IB4�)
and (2) DP (GINIP+IB4+). The scale bars represent

50 mm (see also Figure S4).
by Zn (100 mM) increased both LTS amplitude and kinetics (Fig-

ure 7H, inset). This resulted in an increased excitability with a

lowering of AP activation threshold crowning the potentiated

LTS (Figures 7H and 7I). In two cells out of ten, the sole applica-

tion of Zn at the resting potential of C-LTMRs elicited a depolar-

ization sufficient to trigger spontaneous AP trains (Figure 7J).

Application of Ni in these conditions did not produce any change

in membrane potential (not shown). To exclude TRPA1 channel

contribution, also activated by Zn, these experiments were per-

formed in presence of TRPA1 blocker, HC030031 (10 mM).

Together, our electrophysiological data nicely corroborate the

RNA-seq and the ISH expression data, demonstrating that both

Cav3.2 and Cav3.3 channels are concomitantly expressed in C-

LTMRsand that both channels are absent in the free nerve ending

MRGPRD-expressing neurons.

DISCUSSION

In this study, we used our recently generated mouse model

in which the cutaneous MRGPRD-expressing neurons and C-
1014 Cell Reports 10, 1007–1019, February 17, 2015 ª2015 The Authors
LTMRs were genetically marked by the

m-Cherry protein, in combination with

IB4 live staining followed by cell sorting

and RNAdeep sequencing to gene profile

three categories of primary sensory neu-

rons: the free nerve ending MRGPD-ex-

pressing neurons, C-LTMRs, and a het-

erogeneous population of DRG cells

that neither bind IB4 nor are labeled by

the m-Cherry protein. We provide a digi-

tal measure of the presence and preva-

lence of transcripts from known and

previously unknown genes for each of

the three neuronal subsets. Because the

DN population is composed of a variety

of neuronal subsets and glial cells, DN

data set was used to identify genes spe-

cifically enriched in the free nerve ending

MRGPRD-expressing neurons and those

specifically enriched in C-LTMRs. This analysis yielded 156

genes specifically enriched in the DP neurons and 184 in C-

LTMRs. These genes encode a variety of molecules including

ion channels, receptors, signaling molecules, and previously un-

characterized genes.

A major concern with any gene-profiling experiment is the

follow-up procedure. Which genes should one pursue, and

what should be done with these lists of genes? The answer to

this question was motivated by our objectives to expand the

molecular characterization of C-LTMRs and to identify the

combinatorial expression of the key genes that shape the func-

tional specialization of the free nerve endings MRGPRD+ neu-

rons and C-LTMRs. MRGPRD+ neurons are required for acute

and injury-induced mechanical pain as well as for the sensation

of itch (Cavanaugh et al., 2009; Liu et al., 2012; Shields et al.,

2010), whereas C-LTMRs were postulated to convey light touch

under physiological conditions and mechanical and chemical

pain after injury (Abraira and Ginty, 2013; Delfini et al., 2013; Li

et al., 2011; Löken et al., 2009, 2010; McGlone et al., 2014;

Olausson et al., 2002). Our RNA-seq data in combination with



ISH and gene ontology analysis revealed a great number of

genes expressed in DP neurons, but not in C-LTMRs, and vice

versa, reflecting their anatomical and functional differences.

Indeed, DP neurons showed very high enrichment in genes en-

coding GPCRs and signaling molecules in addition to a selective

expression of three isoforms of the protein kinase C family. The

enrichment of such receptors and signaling molecules is in

agreement with the involvement of DP neurons in acute and

injury-induced mechanical pain and itch (Cavanaugh et al.,

2009; Liu et al., 2012). We show that DP neurons express high

levels of Agtr1a and Ptgdr, suggesting that the pro-nociceptive

effect of their respective agonists, angiotensin II and prosta-

glandin D2, likely occurs through DP neurons activation. PGD2

has been shown to enhance neuronal excitability by increasing

the amplitude of TTX-sensitive currents (Ebersberger et al.,

2011; Nakae et al., 2005), and continuous perfusion of angio-

tensin II enhanced tactile and thermal hypersensitivity in the

setting of nerve injury via the activation of Agtr1a (Pavel et al.,

2013). Furthermore, DP neurons exclusively express MRGPRD,

a GPCR that is activated by b-alanine, but not histamine (Liu

et al., 2012), suggesting that DP neurons are part of a hista-

mine-independent itch neural circuit and that these neurons

can be targeted for treating clinical itch that is resistant to

antihistamines.

C-LTMRs on the other hand expressed different GPCRs than

those expressed in DP neurons such as CCKAR and the metab-

otropic Gaq P2Y1 receptor and showed a striking enrichment in

voltage-gated channels including potassium channels (Kcnq2,

Kcnj12, Kcnv1, Kcna2, and Kcna4), sodium channels and asso-

ciated beta subunits (Scn1a, Scn1b, Scn3b, Scn4b, Scn7a, and

Scn8a), and the low-voltage-gated calcium channels (Cacna1h

and Cacna1i).

It has been shown that CCKAR was restricted to 10% of neu-

rons that do not overlap with peptidergic CGRP+ nociceptors

(Broberger et al., 2001). Our RNA-seq and ISH data demonstrate

that CCKAR is expressed in C-LTMRs and excluded from DP

neurons. Cholecystokinin octapeptide, which in its sulfated

form binds the Gaq/11-coupled CCKAR, is involved in regulation

of a large variety of physiological functions among which

opioid-induced anti-nociception (Suh et al., 1995). Electrophys-

iological studies in rat DRG neurons have shown that activation

of CCKAR evokes membrane depolarization, indicating that

CCKAR mediates excitatory responses (Ma et al., 2006). Psy-

chophysiological studies in human using cholecystokinin octa-

peptide could lend new insights into the role of C-LTMRs in

touch sensation under normal and pathological conditions. C-

LTMRs also exhibited high expression of the metabotropic Gaq

P2Y1 receptor, whereas DP neurons mainly expressed the iono-

tropic purinergic receptor P2X3, demonstrating that, in DP neu-

rons, ATP/ADP compounds are sensed through P2X3, whereas

in C-LTMRs, these signaling intermediates are likely detected

though metabotropic Gaq P2Y1 receptor.

Our data also highlighted the specific and the functional

enrichment of the LVA T-type channels in C-LTMRs. Among

the three T-type channels, we found Cav3.2 and Cav3.3 highly

present in C-LTMRs, with Cav3.3 being exclusively expressed

in this particular class of neurons. T-type currents with slow ki-

netics and resistance to nickel block have been described in a
Cell R
subset of small-sized rat DRG and trigeminal neurons express-

ing slowly adapting mechano-activated currents (Coste et al.,

2007; Ross et al., 2008). However, the identity of such neurons

has never been deciphered. Our RNA-seq data in combination

with ISH and electrophysiological recordings provided a clear

demonstration that Cav3.3 is a specific marker of C-LTMRs

and offers a new possible selective pharmacological target

to control C-LTMRs’ excitability in mice. Although zinc has

plethoric effects, its use to investigate Cav3.3 contribution to

C-LTMR excitability shows specificity. Particularly, the slowing

of LTS kinetics is highly correlated to the massive changes in

Cav3.3 currents. In line with this, the depolarizing effects

observed result, at least in part, from the persistent depolarizing

zinc-modulated Cav3.3 current. Whereas the contribution of

other zinc targets remains possible, TRPA1 effect has been elim-

inated by the use of its specific blocker, and a possible inhibition

of two pore potassium TASK3 channel (KCNK9) is unlikely

because the transcript is not present in C-LTMRs (our study;

Usoskin et al., 2015). Mechanistically, our findings suggest a

substantial contribution of Cav3.3 to rebound firing reminiscent

of those observed in nuclear reticularis thalamic neurons that,

like C-LTMR, express both Cav3.2 and Cav3.3 and with a prom-

inent Cav3.3 effect on burst firing (Astori et al., 2011).

Finally, a recent elegant study using an unbiased large-scale

single-cell RNA sequencing revealed 11 molecularly distinct

subsets of primary sensory neurons, including the TH-express-

ing C-LTMRs population (Usoskin et al., 2015). Very interestingly,

genes enriched in C-LTMRs in our study were similar to those

upregulated in the TH population described in the Usoskin and

colleagues’ study. However, our ISH experiments showed that

the vast majority of C-LTMRs-enriched genes were also ex-

pressed in other neurons, preferentially in the NF200+ neurons,

further supporting our strategy to validate the specific expres-

sion of the identified enriched genes using ISH approach. Given

that the majority of C-LTMRs-enriched genes were also ex-

pressed in NF200+ neurons and that NF200 is a hallmark of pro-

prioceptive and Ab and Ad LTMRs (Abraira and Ginty, 2013), we

postulate that C-LTMRs share many molecular features with

some Ab and Ad LTMRs. In line with this hypothesis, studies

of the last few years demonstrated that C-LTMRs share many

functional and anatomical features of some Ab and Ad LTMRs

(Abraira and Ginty, 2013). C-LTMRs have been described to

convey low-threshold mechanical stimuli (Bessou et al., 1971;

Douglas and Ritchie, 1957; Johansson et al., 1988; Li et al.,

2011; Maruhashi et al., 1952; Seal et al., 2009; Zotterman,

1939). They are sensitive to skin indentation, respond to sus-

tained mechanical stimuli with slow and intermediate adaptation

rates, and form longitudinal lanceolate endings around hair folli-

cles (Abraira and Ginty, 2013; Delfini et al., 2013; Li et al., 2011;

Lou et al., 2013; Lumpkin et al., 2010; Seal et al., 2009). Cross

comparison of our RNA-seq data sets with those of the five NF

subsets recently published by Usoskin and colleagues (Usoskin

et al., 2015) will provide a comprehensive view of the molecular

signatures of C-LTMRs and Ab and Ad LTMRs.

In conclusion, data presented in this study provide a wealth

of information about the presence and prevalence of trans-

cripts from known and previously unknown genes in three cate-

gories of primary sensory neurons, they highlight the differential
eports 10, 1007–1019, February 17, 2015 ª2015 The Authors 1015



Figure 7. Functional Presence of Cav3.2 and Cav3.3 in C-LTMR Neurons

(A) Shows the expression patterns of Cav3.2 (Cacna1h) and Cav3.3 (Cacna1i)-encoding transcripts in DP and C-LTMRs (filled arrowheads) as assessed by ISH

with corresponding antisense probes (in red) followed by double immunolabelling with anti-GINIP antibody (in blue) and Alexa-488-conjugated IB4 (in green).

Cacna1h probe reactivity was also detected in larger neurons (empty arrowheads). The scale bars represent 20 mm.

(B) Typical current voltage relationships in GINIP+IB4+ and GINIP+IB4� neurons evoked by 200-ms-long ramp depolarizations from �90 to +100 mV. Note that

LVA currents are only present in the GINIP+IB4� cells.

(C) Individual scatter values of LVA and HVA current densities for GINIP+IB4+ and GINIP+IB4� neurons (error bars represent the SEM calculated on the mean

current).

(D) Typical example of T-type currents in C-LTMRs evoked by 100-ms-long step depolarizations from a holding potential of �90 mV to test potential of �80 to

�30 mV by 5 mV increments. Left traces (in black): control condition; middle traces (in black): after 30 mM nickel (Ni) application; right traces (in gray): difference

current between these two conditions.

(E) Typical example of the sequential effect of 30 mM Ni (green) and 30 mM Ni + 100 mM zinc (Zn) (red) on a C-LTMR neuron. Currents are evoked by a step

depolarization from �90 mV to �30 mV.

(F) Individual scatter values showing the effect of 30 mMNi on the peak T-type current density in C-LTMRs (error bars represent the SEM calculated on the mean

current); black dots: control; green dots: +30 mM Ni.

(legend continued on next page)
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expression of a great number of genes in two diametrically oppo-

site classes of cutaneous afferents, the ISH screen followed by

immunostaining and IB4 binding led to the generation of two

open-access libraries that allow monitoring the cellular distribu-

tion of 115 genes, they provide the first electrophysiological

recording of a low-voltage-gated Ca2+ channel exclusively pre-

sent in C-LTMRs, and they suggest that C-LTMRs share many

molecular features with Ab and Ad LTMRs.

EXPERIMENTAL PROCEDURES

The expression patterns of DN-enriched genes; the co-expression of C-

LTMRs-enriched genes with NF200+ neurons; the supplemental tables enclos-

ing DP-, C-LTMRs-, and DN-enriched genes; as well as the GO analysis are

provided in the Supplemental Information.

Mice

Mice were maintained under standard housing conditions (23�C, 40% humid-

ity, 12 hr light cycles, and free access to food and water). C57BL/6 mice were

fromCharles River Laboratories, and heterozygousGINIPm-Cherry knockinmice

were previously generated in the laboratory (Gaillard et al., 2014). Special effort

was made to minimize the number as well as the stress and suffering of mice

used in this study. All protocols are in agreement with European Union recom-

mendations for animal experimentation.

FACS

IB4+GINIP+, IB4�GINIP+, IB4+GINIP�, and IB4�GINIP� cells were sorted on

FACS Aria cell sorter (BD Bioscience) by gating on Sytox Blue� m-Cherry+

for GINIP+ cells and Sytox Blue� m-Cherry� for GINIP� cells. DRGs cell sus-

pensions from C57BL/6 mouse were used as a negative control of m-Cherry

fluorescence. FACS analysis was performed with Diva software (BD Biosci-

ence). Cells were sorted directly in ice-cold RLT lysis buffer fromRNeasyMicro

Kit (QIAGEN), supplemented with 10% (v/v) b-mercaptoethanol (Sigma), and

snap-frozen at �80�C before RNA extraction.

RNA-Seq

RNA-seq libraries were constructed with the TruSeq RNA sample preparation

(low-throughput protocol) kit from Illumina. (See the Supplemental Experi-

mental Procedures for more details).

RNA-Seq Data Analysis

Image analysis and basecalling were performed using the HiSeq Control

Software and Real-Time Analysis component provided by Illumina. The

quality of the data was assessed with FastQC from the Babraham Institute

and the Illumina software SAV (Sequence Analysis Viewer). Demultiplexing

was performed using Illumina’s sequencing analysis software (CASAVA

1.8.2). The eland_rna module from CASAVA was used to align RNA-seq

reads to the Mus musculus genome (UCSC mm10) with a set of gene-model

annotations (refFlat.txt file downloaded from UCSC on October 10, 2012) in

order to generate automatically the splice junctions. Reads were also

aligned to a set of contaminants, including the rRNAs, the mitochondrial

chromosome, the PhiX genome (Illumina control), and the Illumina adapters.

Reads mapping to contaminants were discarded. The gene counting was

performed using the counting module from CASAVA. This module counts
(G) Individual scatter values showing the effect of 100 mM Zn (red dots) on the d

(H) Typical traces of the rebound LTS evoked at the end of a 1-s-long hyperpolariz

LTMR cell. The hyperpolarizing steps shown are not sufficient to evoke an action

The inset shows magnified traces of LTS and the effects of Ni + Zn on their kine

(I) Threshold hyperpolarization for LTS-induced AP in control condition (bla

C-LTMRs. Values are presented as a ‘‘before and after’’ plot. The efficiency of h

Ni ones.

(J) Application of Ni + Zn to C-LTMRs results in membrane depolarization and spo

in the presence of the TRPA1 channel blocker HC030001 (10 mM).

Cell R
the number of bases mapping to each exon and splice junctions. Then,

exon counts were summed by gene and divided by the length of reads

(i.e., 100) to obtain the gene counts. Only the first read in pairs has been

taken into account during this step. The differential analysis was performed

under the R software (version 2.15.0). Downstream statistical analysis was

made on (1) genes that generated at least ten reads and (2) genes that

generated at least 1,000 reads. Differentially expressed genes were identi-

fied using the Bioconductor (Robinson et al., 2010) package edgeR (Alexa

et al., 2006) version 2.6.2. Data were normalized using the TMM (Robinson

and Oshlack, 2010) normalization factors. Genes with adjusted p value less

than 1% (according to the FDR method from Benjamini-Hochberg) were

declared differentially expressed. Genes were then classified using custom

rules: (1) genes declared as differentially expressed in condition A relative to

condition B and to condition C and having a fold-change of at least 2 (ab-

solute value) in both cases are considered to be specific of condition A.

(2) A gene will be specific of the two conditions A and B simultaneously if

it is differentially expressed in A versus C and in B versus C with an absolute

fold change >2 and with an absolute fold change <2 between A and B. (3)

Filtered genes are considered to be specific of none condition. (4) Genes

belonging to none of the previous categories are considered to be specific

of the three conditions simultaneously. Free web access GOrilla database

was used to perform the GO functional annotation of the resulting list of

genes as described in Eden et al. (2009).

ISH and Immunostaining

ISH and immunostaining were performed as described inMoqrich et al. (2004).

(See the Supplemental Experimental Procedures for more details).

Electrophysiology

Lumbar DRGs were prepared and cultured as described previously (Francois

et al., 2013) from adult male GINIPm-Cherry mice. Recordings were made within

24 hr of culture. To identify IB4+-positive neurons, we incubated cultures with

Alexa-488-conjugated IB4 (1 mg/ml; 5 min at 37�C; Invitrogen) diluted in extra-

cellular solution and washed before recordings. Conditions for recordings of

voltage-gated calcium currents and of membrane potential were as described

in Delfini et al. (2013) and Francois et al. (2013).

Online Information Data

Patterns of expression of over 100 genes are enclosed in DP and C-LTMRs

ISH libraries. For DP, see http://www.ibdm.univ-mrs.fr/equipes/reynders/

DP-ISHlibrary.pptx. For C-LTMRs, see http://www.ibdm.univ-mrs.fr/equipes/

reynders/CLTMRs-ISHlibrary.pptx.

ACCESSION NUMBERS

All data, including raw reads, RPKM normalization, and TMM-normalized,

have been deposited to the NCBI GEO under accession number

GSE64091.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and 12 tables and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2015.01.022.
eactivation kinetics of the Ni-resistant fraction (green dots) of C-LTMRs.

ing step in control condition (black) and with 50 mMNi + 100 mMZn (red) in a C-

potential in control whereas they evoke one in the presence of the Ni + Zn mix.

tics.

ck), in 50 mM Ni (green), and with 50 mM Ni + 100 mM Zn (red) in ten

yperpolarization is reduced in Ni+Zn condition in comparison to control and

ntaneous action potentials in a fraction of cells (n = 2/10). This effect is obtained
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