K. Wuichet, B. J. Cantwell, and I. B. Zhulin, Evolution and phyletic distribution of two-component signal transduction systems, Current Opinion in Microbiology, vol.13, issue.2, pp.219-225, 2010.
DOI : 10.1016/j.mib.2009.12.011

D. E. Whitworth, Two-component regulatory systems in prokaryotes Bacterial Regulatory Networks, pp.191-222, 2012.

R. H. Williams and D. E. Whitworth, The genetic organisation of prokaryotic two-component system signalling pathways, BMC Genomics, vol.11, issue.1, p.720, 2010.
DOI : 10.1186/1471-2164-11-720

M. Y. Galperin, Diversity of structure and function of response regulator output domains, Current Opinion in Microbiology, vol.13, issue.2, pp.150-159, 2010.
DOI : 10.1016/j.mib.2010.01.005

D. E. Whitworth, Classification and organization of two-component systems, 2012.

J. Cheung and W. A. Hendrickson, Sensor domains of two-component regulatory systems, Current Opinion in Microbiology, vol.13, issue.2, pp.116-123, 2010.
DOI : 10.1016/j.mib.2010.01.016

T. Krell, J. Lacal, A. Busch, H. Silva-jiménez, M. Guazzaroni et al., Bacterial Sensor Kinases: Diversity in the Recognition of Environmental Signals, Annual Review of Microbiology, vol.64, issue.1, pp.539-559, 2010.
DOI : 10.1146/annurev.micro.112408.134054

V. Raghavan and E. A. Groisman, Orphan and hybrid two-component system proteins in health and disease, Current Opinion in Microbiology, vol.13, issue.2, pp.226-231, 2010.
DOI : 10.1016/j.mib.2009.12.010

M. Barakat, P. Ortet, C. Jourlin-castelli, M. Ansaldi, V. Mejean et al., P2CS: a two-component system resource for prokaryotic signal transduction research, BMC Genomics, vol.10, issue.1, p.315, 2009.
DOI : 10.1186/1471-2164-10-315

M. Barakat, P. Ortet, and D. E. Whitworth, P2CS: a database of prokaryotic two-component systems, Nucleic Acids Research, vol.39, issue.Database, pp.771-776, 2011.
DOI : 10.1093/nar/gkq1023

P. Ortet, G. De-luca, D. E. Whitworth, and M. Barakat, P2TF: a comprehensive resource for analysis of prokaryotic transcription factors, BMC Genomics, vol.13, issue.1, p.628, 2012.
DOI : 10.1093/bioinformatics/btn058

M. Barakat, P. Ortet, and D. E. Whitworth, P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes, BMC Genomics, vol.14, issue.1, p.269, 2013.
DOI : 10.1093/nar/gkn421

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1991.
DOI : 10.1016/S0022-2836(05)80360-2

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, issue.9, pp.1189-1191, 2009.
DOI : 10.1093/bioinformatics/btp033

O. Bastien, P. Ortet, S. Roy, and E. Marechal, A configuration space of homologous proteins conserving mutual information and allowing a phylogeny inference based on pair-wise Z-score probabilities, BMC Bioinformatics, vol.6, issue.1, p.49, 2005.
DOI : 10.1186/1471-2105-6-49

S. A. Smits and C. C. Ouverney, jsPhyloSVG: A Javascript Library for Visualizing Interactive and Vector-Based Phylogenetic Trees on the Web, PLoS ONE, vol.10, issue.8, p.12267, 2010.
DOI : 10.1371/journal.pone.0012267.s001

M. De-been, C. Francke, R. Moezelaar, T. Abee, and R. J. Siezen, Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis, Microbiology, vol.152, issue.10, pp.3035-3048, 2006.
DOI : 10.1099/mic.0.29137-0

A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic et al., Update on activities at the Universal Protein Resource (UniProt) in 2013 STRING v9.1: protein-protein interaction networks, with increased coverage and integration, The Uniprot Consortium, pp.43-47, 2013.

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt et al., Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-230, 2014.
DOI : 10.1093/nar/gkt1223

URL : https://hal.archives-ouvertes.fr/hal-01294685

E. J. Capra and M. T. Laub, Evolution of Two-Component Signal Transduction Systems, Annual Review of Microbiology, vol.66, issue.1, pp.325-347, 2012.
DOI : 10.1146/annurev-micro-092611-150039

D. E. Whitworth and P. J. Cock, Evolution of prokaryotic two-component systems: insights from comparative genomics, Amino Acids, vol.5, issue.3, pp.459-466, 2009.
DOI : 10.1007/s00726-009-0259-2

R. N. Stipp, H. Boisvert, D. J. Smith, J. F. Hofling, M. J. Duncan et al., CovR and VicRK Regulate Cell Surface Biogenesis Genes Required for Biofilm Formation in Streptococcus mutans, PLoS ONE, vol.57, issue.3, p.58271, 2013.
DOI : 10.1371/journal.pone.0058271.s007

L. Burger and E. Van-nimwegen, Accurate prediction of protein???protein interactions from sequence alignments using a Bayesian method, Molecular Systems Biology, vol.8, p.165, 2008.
DOI : 10.1038/msb4100203

R. R. Cheng, F. Morcos, H. Levine, and J. N. Onuchic, Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information, Proceedings of the National Academy of Sciences, vol.111, issue.5, pp.563-571, 2014.
DOI : 10.1073/pnas.1323734111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918776