H. D. Abarbanel, M. Kostuk, W. J. Whartenby, and . Roy, Data assimilation with regularized nonlinear instabilities, Quarterly Journal of the Royal Meteorological Society, vol.97, pp.769-783, 2010.
DOI : 10.1002/qj.600

J. L. Anderson, A Local Least Squares Framework for Ensemble Filtering, Monthly Weather Review, vol.131, issue.4, pp.634-642, 2003.
DOI : 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2

R. A. Anthes, Data Assimilation and Initialization of Hurricane Prediction Models, Journal of the Atmospheric Sciences, vol.31, issue.3, pp.702-719, 1974.
DOI : 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2

D. Auroux, The back and forth nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, International Journal for Numerical Methods in Fluids, vol.45, issue.1, pp.911-929, 2009.
DOI : 10.1002/fld.1980

URL : https://hal.archives-ouvertes.fr/hal-01275639

D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, Comptes Rendus Mathematique, vol.340, issue.12, pp.873-878, 2005.
DOI : 10.1016/j.crma.2005.05.006

URL : https://hal.archives-ouvertes.fr/inria-00189644

D. Auroux and J. Blum, A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlin . Processes Geophys, pp.305-31910, 2008.

D. Auroux and M. Nodet, The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.18, issue.2, pp.318-342, 2012.
DOI : 10.1051/cocv/2011004

URL : https://hal.archives-ouvertes.fr/inria-00325305

D. Auroux, J. Blum, and M. Nodet, Diffusive Back and Forth Nudging algorithm for data assimilation, Comptes Rendus Mathematique, vol.349, issue.15-16, pp.849-854, 2011.
DOI : 10.1016/j.crma.2011.07.004

URL : https://hal.archives-ouvertes.fr/inria-00617571

D. Auroux, P. Bansart, and J. Blum, An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons, Inverse Problems in Science and Engineering, vol.147, issue.1, pp.399-419, 2012.
DOI : 10.1175/1520-0493(2000)128<0864:AOTQIM>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00904821

J. Ballabrera-poy, E. Kalnay, Y. , and S. , Data assimilation in a system with two scales ? combining two initialization techniques, Tellus A, pp.539-549, 2009.

K. Bergemann, S. Reich, Q. J. Kalman-filter, and . Roy, A mollified ensemble Kalman filter, Quarterly Journal of the Royal Meteorological Society, vol.141, issue.651, pp.1636-1643, 2010.
DOI : 10.1002/qj.672

E. Blayo, J. Verron, and J. Molines, Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic, Journal of Geophysical Research, vol.81, issue.C12, pp.24691-24705, 1994.
DOI : 10.1029/94JC01644

J. Blum, L. Dimet, F. Navon, I. M. Ciarlet, P. G. Temam et al., Data Assimilation for Geophysical Fluids, pp.385-442, 2008.
DOI : 10.1016/S1570-8659(08)00209-3

URL : https://hal.archives-ouvertes.fr/inria-00391892

F. Bonnans and P. Rouchon, Commande et optimisation de systèmes dynamiques, Les Editions de l'École polytechnique, pp.1-284, 2005.

P. Bouttier, E. Blayo, J. M. Brankart, P. Brasseur, E. Cosme et al., Toward a data assimilation system for NEMO, Mercator Ocean Quarterly Newsletter, vol.46, pp.31-45, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00945600

K. I. Chang, M. Ghil, K. Ide, L. , and C. C. , Transition to Aperiodic Variability in a Wind-Driven Double-Gyre Circulation Model, Journal of Physical Oceanography, vol.31, issue.5, pp.1260-1286, 2001.
DOI : 10.1175/1520-0485(2001)031<1260:TTAVIA>2.0.CO;2

E. P. Chassignet and P. R. Gent, The Influence of Boundary Conditions on Midlatitude Jet Separation in Ocean Numerical Models, Journal of Physical Oceanography, vol.21, issue.9, pp.1290-1299, 1991.
DOI : 10.1175/1520-0485(1991)021<1290:TIOBCO>2.0.CO;2

X. Chen, C. Liu, K. O-'driscoll, B. Mayer, J. Su et al., On the nudging terms at open boundaries in regional ocean models, Ocean Model, pp.14-25, 2013.

M. Clifford, C. Horton, J. Schmitz, and L. H. Kantha, An oceanographic nowcast/forecast system for the Red Sea, Journal of Geophysical Research: Oceans, vol.101, issue.C11, pp.25101-2512210, 1997.
DOI : 10.1029/97JC01919

E. Cosme, J. Brankart, J. Verron, P. Brasseur, K. et al., Implementation of a Reduced-rank, square-root smoother for ocean data assimilation, Ocean Model, pp.87-100, 2010.

P. Courtier, J. N. Thepaut, A. J. Hollingsworth, and . Roy, A strategy for operational implementation of 4D-Var, using an incremental approach, Quarterly Journal of the Royal Meteorological Society, vol.45, issue.519, pp.1367-1387, 1994.
DOI : 10.1002/qj.49712051912

A. Donovan, M. Mirrahimi, and P. And-rouchon, Back and forth nudging for quantum state reconstruction, 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp.1-5, 2010.
DOI : 10.1109/ISCCSP.2010.5463439

URL : https://hal.archives-ouvertes.fr/hal-00523603

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, vol.109, issue.Part 4, pp.10143-1016210, 1994.
DOI : 10.1029/94JC00572

A. Gelb, J. Kasper, R. A. Nash, C. F. Price, S. et al., Applied Optimal Estimation, The M.I, 1974.

K. Haines, P. Malanotte-rizzoli, R. E. Young, and W. R. Holland, A comparison of two methods for the assimilation of altimeter data into a shallow-water model, Dynamics of Atmospheres and Oceans, vol.17, issue.2-3, pp.89-133, 1993.
DOI : 10.1016/0377-0265(93)90014-X

J. Hoke and R. Anthes, The Initialization of Numerical Models by a Dynamic-Initialization Technique, Monthly Weather Review, vol.104, issue.12, pp.1551-1556, 1976.
DOI : 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2

B. R. Hunt, E. J. Kostelich, and I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear Phenomena, vol.230, issue.1-2, pp.112-126, 2007.
DOI : 10.1016/j.physd.2006.11.008

R. E. Kalman and R. S. Bucy, New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1, pp.95-108, 1961.
DOI : 10.1115/1.3658902

E. Kalnay and S. Yang, Accelerating the spin-up of Ensemble Kalman Filtering, Quarterly Journal of the Royal Meteorological Society, vol.58, issue.651, pp.1644-1651, 2010.
DOI : 10.1002/qj.652

E. Kalnay, K. Park, S. Pu, Z. Gao, and J. , Application of the Quasi-Inverse Method to Data Assimilation, Monthly Weather Review, vol.128, issue.3, pp.864-875, 2000.
DOI : 10.1175/1520-0493(2000)128<0864:AOTQIM>2.0.CO;2

P. D. Killworth, C. Dieterich, L. Provost, C. Oschlies, A. et al., Assimilation of altimetric data and mean sea surface height into an eddy-permitting model of the North Atlantic, Progress in Oceanography, vol.48, issue.2-3, pp.313-33510, 2001.
DOI : 10.1016/S0079-6611(01)00009-X

M. Krysta, E. Blayo, E. Cosme, and J. Verron, A Consistent Hybrid Variational-Smoothing Data Assimilation Method: Application to a Simple Shallow-Water Model of the Turbulent Midlatitude Ocean, Monthly Weather Review, vol.139, issue.11, pp.3333-3347, 2011.
DOI : 10.1175/2011MWR3150.1

URL : https://hal.archives-ouvertes.fr/hal-00769109

S. Lakshmivarahan and J. Lewis, Nudging Methods: A Critical Overview, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp.27-58, 2012.

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations, pp.97-110, 1986.

Z. Leghtas, M. Mirrahimi, and P. And-rouchon, Back and forth nudging for quantum state estimation by continuous weak measurement, Proceedings of the 2011 American Control Conference, pp.4334-4339, 2011.
DOI : 10.1109/ACC.2011.5991108

URL : https://hal.archives-ouvertes.fr/hal-00638468

L. Lei, D. Stauffer, S. E. Haupt, Y. , and G. , A hybrid nudging-ensemble Kalman filter approach to data assimilation. Part I: application in the Lorenz system, Tellus A, vol.130, issue.0, 2012.
DOI : 10.1002/qj.49711850808

Y. Leredde, J. Devenon, and I. Dekeyser, Turbulent viscosity optimized by data assimilation, Annales Geophysicae, vol.17, issue.11, pp.1463-147710, 1999.
DOI : 10.1007/s00585-999-1463-9

URL : https://hal.archives-ouvertes.fr/hal-00329142

M. M. Levy, P. Klein, A. Tréguier, D. Iovino, G. Madec et al., Modifications of gyre circulation by sub-mesoscale physics, Ocean Model, pp.1-15, 2010.

J. K. Lewis, I. Shulman, and A. F. Blumberg, Assimilation of Doppler radar current data into numerical ocean models, Continental Shelf Research, vol.18, issue.5, pp.541-55910, 1998.
DOI : 10.1016/S0278-4343(98)00006-5

H. Li, M. Kanamitsu, H. , and S. , California reanalysis downscaling at 10 km using an ocean-atmosphere coupled regional model system, Journal of Geophysical Research: Atmospheres, vol.137, issue.10, pp.10-1029, 2012.
DOI : 10.1175/2008MWR2654.1

N. Lingala, N. Sri-namachchivaya, N. Perkowski, Y. , and H. , Optimal Nudging in Particle Filters, Procedia IUTAM, vol.6, pp.18-30, 2013.
DOI : 10.1016/j.piutam.2013.01.002

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, 1971.
DOI : 10.1007/978-3-642-65024-6

D. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, vol.16, issue.6, pp.596-602, 1971.
DOI : 10.1109/TAC.1971.1099826

D. G. Luenberger, Observers for multivariable systems, IEEE Transactions on Automatic Control, vol.11, issue.2, pp.190-197, 1966.
DOI : 10.1109/TAC.1966.1098323

X. Luo and I. Hoteit, Ensemble Kalman filtering with residual nudging, Tellus A, 2012.

X. Luo, I. Hoteit, and Q. J. Roy, Efficient particle filtering through residual nudging, Quarterly Journal of the Royal Meteorological Society, vol.130, issue.679, pp.557-572, 2013.
DOI : 10.1002/qj.2152

URL : http://arxiv.org/abs/1303.2698

G. Madec, P. Marchesiello, J. C. Mcwilliams, and A. Shchepetkin, Open boundary conditions for long-term integration of regional oceanic models, Ocean Model, pp.1-2010, 2001.

K. Mogensen, M. A. Balmaseda, A. T. Weaver, M. Martin, and A. Vidard, NEMOVAR: A variational data assimilation system for the NEMO ocean model, ECMWF Newsletter, vol.120, pp.17-22, 2009.

A. Molcard, A. Griffa, and T. M. Ozgokmen, Lagrangian Data Assimilation in Multilayer Primitive Equation Ocean Models, Journal of Atmospheric and Oceanic Technology, vol.22, issue.1, pp.70-83, 2004.
DOI : 10.1175/JTECH-1686.1

P. Morel, G. Lefevre, and G. Rabreau, On initialization and nonsynoptic data assimilation, Tellus A, p.21, 1971.

D. T. Pham, Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Monthly Weather Review, vol.129, issue.5, pp.1494-1207, 2001.
DOI : 10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/inria-00073082

F. W. Primeau, Multiple Equilibria of a Double-Gyre Ocean Model with Super-Slip Boundary Conditions, Journal of Physical Oceanography, vol.28, issue.11, pp.2130-2147, 1998.
DOI : 10.1175/1520-0485(1998)028<2130:MEOADG>2.0.CO;2

Z. Pu, E. Kalnay, J. Sela, and I. Szunyogh, Sensitivity of Forecast Errors to Initial Conditions with a Quasi-Inverse Linear Method, Monthly Weather Review, vol.125, issue.10, pp.2479-2503, 1997.
DOI : 10.1175/1520-0493(1997)125<2479:SOFETI>2.0.CO;2

K. Ramdani, M. Tucsnak, and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica, vol.46, issue.10, pp.1616-1625, 2010.
DOI : 10.1016/j.automatica.2010.06.032

URL : https://hal.archives-ouvertes.fr/hal-00529834

G. Roullet and G. Madec, Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models, Journal of Geophysical Research: Oceans, vol.97, issue.C10, pp.23927-23942, 2000.
DOI : 10.1029/2000JC900089

URL : https://hal.archives-ouvertes.fr/hal-00772157

W. C. Skamarock, Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra, Monthly Weather Review, vol.132, issue.12, pp.3019-3032, 2004.
DOI : 10.1175/MWR2830.1

D. Stauffer and J. Bao, Optimal determination of nudging coefficients using the adjoint equations, Tellus A, pp.358-369, 1993.

D. R. Stauffer and N. L. Seaman, Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data, 118<1250:UOFDDA>2.0.CO, pp.1250-1277, 1990.
DOI : 10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2

O. Talagrand, A study of the dynamics of four-dimensional data assimilation, Tellus, pp.43-60, 1981.

M. Tenenhaus, La régression PLS : Théorie et Pratique, éditions Technip, 1998.

K. R. Thompson, D. G. Wright, Y. Lu, and E. Demirov, A simple method for reducing seasonal bias and drift in eddy resolving ocean models, Ocean Modelling, vol.13, issue.2, pp.109-125, 2006.
DOI : 10.1016/j.ocemod.2005.11.003

J. Verron, Nudging satellite altimeter data into quasi-geostrophic ocean models, Journal of Geophysical Research, vol.78, issue.C3, pp.7479-7491, 1992.
DOI : 10.1029/92JC00200

P. A. Vidard, L. Dimet, F. Piacentini, and A. , Determination of optimal nudging coefficients, Tellus A, pp.1-15, 2003.

K. Wang, J. Debernard, A. K. Sperrevik, E. Isachsen, and T. Lavergne, A combined optimal interpolation and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS, Annals of Glaciology, vol.54, issue.62, pp.8-12, 2013.
DOI : 10.3189/2013AoG62A138

A. Weaver, P. J. Courtier, and . Roy, Correlation modelling on the sphere using a generalized diffusion equation, Quarterly Journal of the Royal Meteorological Society, vol.108, issue.575, pp.1815-1846, 2001.
DOI : 10.1002/qj.49712757518

A. T. Weaver, C. Deltel, E. Machu, S. Ricci, N. J. Daget et al., A multivariate balance operator for variational ocean data assimilation, Quarterly Journal of the Royal Meteorological Society, vol.131, issue.41, pp.3605-3625, 2005.
DOI : 10.1256/qj.05.119

URL : https://hal.archives-ouvertes.fr/hal-00125249

P. D. Willians, A Proposed Modification to the Robert???Asselin Time Filter*, Monthly Weather Review, vol.137, issue.8, pp.2538-2546, 2009.
DOI : 10.1175/2009MWR2724.1

M. Zeitz, The extended Luenberger observer for nonlinear systems, Systems & Control Letters, vol.9, issue.2, pp.149-156, 1987.
DOI : 10.1016/0167-6911(87)90021-1

X. Zou, I. M. Navon, L. Dimet, and F. X. Roy, An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, Quarterly Journal of the Royal Meteorological Society, vol.116, issue.508, pp.1163-1186, 1992.
DOI : 10.1002/qj.49711850808