A. Subramanian, P. Tamayo, V. Mootha, S. Mukherjee, B. Ebert et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.102, issue.43, pp.15545-50, 2005.
DOI : 10.1073/pnas.0506580102

A. Subramanian, H. Kuehn, J. Gould, P. Tamayo, and J. Mesirov, GSEA-P: a desktop application for Gene Set Enrichment Analysis, Bioinformatics, vol.23, issue.23, pp.3251-3254, 2007.
DOI : 10.1093/bioinformatics/btm369

A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics, vol.27, issue.12, pp.1739-1779, 2011.
DOI : 10.1093/bioinformatics/btr260

A. Liberzon, A Description of the Molecular Signatures Database (MSigDB) Web Site, Methods Mol Biol, vol.1150, pp.153-60, 2014.
DOI : 10.1007/978-1-4939-0512-6_9

J. Hubble, J. Demeter, J. H. Mao, M. Nitzberg, M. Reddy et al., Implementation of GenePattern within the Stanford Microarray Database, Nucleic Acids Research, vol.37, issue.Database, pp.898-901, 2009.
DOI : 10.1093/nar/gkn786

B. Efron and R. Tibshirani, On testing the significance of sets of genes, The Annals of Applied Statistics, vol.1, issue.1, pp.107-136, 2007.
DOI : 10.1214/07-AOAS101

M. Suarez-farinas, R. Arbeit, W. Jiang, F. Ortenzio, T. Sullivan et al., Suppression of Molecular Inflammatory Pathways by Toll-Like Receptor 7, 8, and 9 Antagonists in a Model of IL-23-Induced Skin Inflammation, PLoS ONE, vol.132, issue.12, p.84634, 2013.
DOI : 10.1371/journal.pone.0084634.s002

L. Beltrame, L. Rizzetto, R. Paola, P. Rocca-serra, L. Gambineri et al., Using Pathway Signatures as Means of Identifying Similarities among Microarray Experiments, PLoS ONE, vol.203, issue.1, p.4128, 2009.
DOI : 10.1371/journal.pone.0004128.s009

D. Chaussabel and N. Baldwin, Democratizing systems immunology with modular transcriptional repertoire analyses, Nature Reviews Immunology, vol.406, issue.4, pp.271-80, 2014.
DOI : 10.1038/nri3642

V. Mootha, C. Lindgren, K. Eriksson, A. Subramanian, S. Sihag et al., PGC-1??-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, vol.34, issue.3, pp.267-73, 2003.
DOI : 10.1038/ng1180

B. Raddatz, F. Hansmann, I. Spitzbarth, A. Kalkuhl, U. Deschl et al., Transcriptomic Meta-Analysis of Multiple Sclerosis and Its Experimental Models, PLoS ONE, vol.24, issue.1, p.86643, 2014.
DOI : 10.1371/journal.pone.0086643.s012

Z. Shi, C. Derow, and B. Zhang, Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression, BMC Systems Biology, vol.4, issue.1, p.74, 2010.
DOI : 10.1186/1752-0509-4-74

D. Wong and H. Chang, Learning More from Microarrays: Insights from Modules and Networks, Journal of Investigative Dermatology, vol.167, issue.Suppl., pp.175-82, 2005.
DOI : 10.1111/j.0022-202X.2005.23827.x

K. Crozat, R. Guiton, M. Guilliams, S. Henri, T. Baranek et al., Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets, Immunological Reviews, vol.10, issue.1, pp.177-98, 2010.
DOI : 10.1111/j.0105-2896.2009.00868.x

URL : https://hal.archives-ouvertes.fr/hal-00502980

K. Crozat, R. Guiton, V. Contreras, V. Feuillet, C. Dutertre et al., dendritic cells, The Journal of Experimental Medicine, vol.80, issue.6, pp.1283-92, 2010.
DOI : 10.1093/intimm/dxm119

URL : https://hal.archives-ouvertes.fr/hal-01438136

L. Gentile, D. Nacionales, M. Lopez, E. Vanzant, A. Cuenca et al., A Better Understanding of Why Murine Models of Trauma Do Not Recapitulate the Human Syndrome*, Critical Care Medicine, vol.42, issue.6, pp.1406-1419, 2014.
DOI : 10.1097/CCM.0000000000000222

M. Lowes, M. Suarez-farinas, and J. Krueger, Immunology of Psoriasis, Annual Review of Immunology, vol.32, issue.1, pp.227-55, 2014.
DOI : 10.1146/annurev-immunol-032713-120225

E. Messaris and S. Sun, Genetic Correlations Between Murine and Human Trauma, Critical Care Medicine, vol.42, issue.6, pp.1552-1555, 2014.
DOI : 10.1097/CCM.0000000000000260

O. Garra and A. , Systems Approach to Understand the Immune Response in Tuberculosis: An Iterative Process between Mouse Models and Human Disease, Cold Spring Harbor Symposia on Quantitative Biology, vol.78, issue.0, pp.173-180, 2013.
DOI : 10.1101/sqb.2013.78.020172

J. Seok, H. Warren, A. Cuenca, M. Mindrinos, H. Baker et al., Genomic responses in mouse models poorly mimic human inflammatory diseases, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.3507-3519, 2013.
DOI : 10.1073/pnas.1222878110

K. Takao and T. Miyakawa, Genomic responses in mouse models greatly mimic human inflammatory diseases, Proceedings of the National Academy of Sciences, vol.112, issue.4, pp.1167-72, 2015.
DOI : 10.1073/pnas.1401965111

T. Baranek, T. Manh, Y. Alexandre, M. Maqbool, J. Cabeza et al., Differential Responses of Immune Cells to Type I Interferon Contribute to Host Resistance to Viral Infection, Cell Host & Microbe, vol.12, issue.4, pp.571-84, 2012.
DOI : 10.1016/j.chom.2012.09.002

A. Chiricozzi, K. Nograles, L. Johnson-huang, J. Fuentes-duculan, I. Cardinale et al., IL-17 Induces an Expanded Range of Downstream Genes in Reconstituted Human Epidermis Model, PLoS ONE, vol.5, issue.2, p.90284, 2014.
DOI : 10.1371/journal.pone.0090284.s008

M. Haniffa, A. Shin, V. Bigley, N. Mcgovern, P. Teo et al., Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells, Immunity, vol.37, issue.1, pp.60-73, 2012.
DOI : 10.1016/j.immuni.2012.04.012

N. Mcgovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin et al., Human Dermal CD14+ Cells Are a Transient Population of Monocyte-Derived Macrophages, Immunity, vol.41, issue.3, pp.465-77, 2014.
DOI : 10.1016/j.immuni.2014.08.006

E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia et al., Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation, Immunity, vol.38, issue.2, pp.336-384, 2013.
DOI : 10.1016/j.immuni.2012.10.018

S. Tamoutounour, M. Guilliams, M. Sanchis, F. Liu, H. Terhorst et al., Origins and Functional Specialization of Macrophages and of Conventional and Monocyte-Derived Dendritic Cells in Mouse Skin, Immunity, vol.39, issue.5, pp.925-963, 2013.
DOI : 10.1016/j.immuni.2013.10.004

T. Vu-manh, H. Marty, P. Sibille, L. Vern, Y. Kaspers et al., Existence of Conventional Dendritic Cells in Gallus gallus Revealed by Comparative Gene Expression Profiling, The Journal of Immunology, vol.192, issue.10, pp.4510-4517, 2014.
DOI : 10.4049/jimmunol.1303405

S. Robbins, T. Walzer, D. Dembele, C. Thibault, A. Defays et al., Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling, Genome Biology, vol.9, issue.1
DOI : 10.1186/gb-2008-9-1-r17

URL : https://hal.archives-ouvertes.fr/hal-00282558

X. Du, Y. Tang, H. Xu, L. Lit, W. Walker et al., Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monocytes, and polymorphonuclear cells: Comparisons to ischemic stroke, migraine, and Tourette syndrome, Genomics, vol.87, issue.6, pp.693-703, 2006.
DOI : 10.1016/j.ygeno.2006.02.003

M. Lindstedt, K. Lundberg, and C. Borrebaeck, Gene Family Clustering Identifies Functionally Associated Subsets of Human In Vivo Blood and Tonsillar Dendritic Cells, The Journal of Immunology, vol.175, issue.8, pp.4839-4885, 2005.
DOI : 10.4049/jimmunol.175.8.4839

T. Barrett, T. Suzek, D. Troup, S. Wilhite, W. Ngau et al., NCBI GEO: mining millions of expression profiles--database and tools, Nucleic Acids Research, vol.33, issue.Database issue, pp.562-566, 2005.
DOI : 10.1093/nar/gki022

R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling et al., Bioconductor: open software development for computational biology and bioinformatics, Genome Biology, vol.5, issue.10, p.80, 2004.
DOI : 10.1186/gb-2004-5-10-r80

R. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. Antonellis, K. Scherf et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-64, 2003.
DOI : 10.1093/biostatistics/4.2.249

G. Rustici, N. Kolesnikov, M. Brandizi, T. Burdett, M. Dylag et al., ArrayExpress update--trends in database growth and links to data analysis tools, Nucleic Acids Research, vol.41, issue.D1, pp.987-990, 2013.
DOI : 10.1093/nar/gks1174

B. Phipson and G. Smyth, Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn, Statistical Applications in Genetics and Molecular Biology, vol.9, issue.1, p.39, 2010.
DOI : 10.2202/1544-6115.1585

Y. Hochberg and Y. Benjamini, More powerful procedures for multiple significance testing, Statistics in Medicine, vol.63, issue.7, pp.811-819, 1990.
DOI : 10.1002/sim.4780090710

A. Reiner, D. Yekutieli, and Y. Benjamini, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, vol.19, issue.3, pp.368-75, 2003.
DOI : 10.1093/bioinformatics/btf877

A. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, open-source system for microarray data management and analysis, Biotechniques, vol.34, issue.2, pp.374-382, 2003.

D. Arendt, The evolution of cell types in animals: emerging principles from molecular studies, Nature Reviews Genetics, vol.50, issue.11, pp.868-82, 2008.
DOI : 10.1038/nrg2416

K. Nera, P. Kohonen, E. Narvi, A. Peippo, L. Mustonen et al., Loss of Pax5 Promotes Plasma Cell Differentiation, Immunity, vol.24, issue.3, pp.283-93, 2006.
DOI : 10.1016/j.immuni.2006.02.003

J. Guberman, A. J. Arnaiz, O. Baran, J. Blake, A. Baldock et al., BioMart Central Portal: an open database network for the biological community, Database, vol.2011, issue.0, p.41, 2011.
DOI : 10.1093/database/bar041

URL : https://hal.archives-ouvertes.fr/inria-00638749