A. Barrett, Handbook of Proteolytic Enzymes Handbook of Proteolytic Enzymes, pp.325-370, 2013.

N. Rawlings, M. Waller, A. Barrett, and A. Bateman, : the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Research, vol.42, issue.D1, pp.503-512, 2014.
DOI : 10.1093/nar/gkt953

A. Murzin and S. Brenner, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-540, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

I. Sillitoe, A. Cuff, B. Dessailly, N. Dawson, N. Furnham et al., New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures, Nucleic Acids Research, vol.41, issue.D1, pp.490-498, 2013.
DOI : 10.1093/nar/gks1211

J. Tyndall, T. Nall, and D. Fairlie, Proteases Universally Recognize Beta Strands In Their Active Sites, Chemical Reviews, vol.105, issue.3, pp.973-1000, 2005.
DOI : 10.1021/cr040669e

V. Carnevale, S. Raugei, C. Micheletti, and P. Carloni, Convergent Dynamics in the Protease Enzymatic Superfamily, Journal of the American Chemical Society, vol.128, issue.30, pp.9766-9772, 2006.
DOI : 10.1021/ja060896t

D. Gagné and N. Doucet, Structural and functional importance of local and global conformational fluctuations in the RNase??A superfamily, FEBS Journal, vol.23, issue.22, pp.5596-607, 2013.
DOI : 10.1111/febs.12371

R. García-meseguer, S. Martí, J. Ruiz-pernía, V. Moliner, and I. Tuñón, Studying the role of protein dynamics in an SN2 enzyme reaction using free-energy surfaces and solvent coordinates, Nature Chemistry, vol.120, issue.7, pp.566-71, 2013.
DOI : 10.1038/nchem.1660

S. Hammes-schiffer and S. Benkovic, Relating Protein Motion to Catalysis, Annual Review of Biochemistry, vol.75, issue.1, pp.519-560, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142800

L. Mcgowan and D. Hamelberg, Conformational Plasticity of an Enzyme during Catalysis: Intricate Coupling between Cyclophilin A Dynamics and Substrate Turnover, Biophysical Journal, vol.104, issue.1, pp.216-242, 2013.
DOI : 10.1016/j.bpj.2012.11.3815

L. Luk, J. Ruiz-pernía, J. Dawson, W. Roca, M. Loveridge et al., Unraveling the role of protein dynamics in dihydrofolate reductase catalysis, Proceedings of the National Academy of Sciences, vol.110, issue.41, pp.16344-16353, 2013.
DOI : 10.1073/pnas.1312437110

D. Glowacki, J. Harvey, and A. Mulholland, Taking Ockham's razor to enzyme dynamics and catalysis, Nature Chemistry, vol.85, issue.3, pp.169-176, 2012.
DOI : 10.1038/nchem.1244

S. Hammes-schiffer, Catalytic Efficiency of Enzymes: A Theoretical Analysis, Biochemistry, vol.52, issue.12, pp.2012-2032, 2013.
DOI : 10.1021/bi301515j

K. Henzler-wildman, M. Lei, V. Thai, S. Kerns, M. Karplus et al., A hierarchy of timescales in protein dynamics is linked to enzyme catalysis, Nature, vol.21, issue.7171, pp.913-919, 2007.
DOI : 10.1038/nature06407

A. Jones, C. Levy, S. Hay, and N. Scrutton, -dependent enzymes, FEBS Journal, vol.134, issue.13, pp.2997-3008, 2013.
DOI : 10.1111/febs.12223

URL : https://hal.archives-ouvertes.fr/hal-00458910

S. Hay and N. Scrutton, Good vibrations in enzyme-catalysed reactions, Nature Chemistry, vol.276, issue.3, pp.161-169, 2012.
DOI : 10.1038/nchem.1223

S. Schwartz and V. Schramm, Enzymatic transition states and dynamic motion in barrier crossing, Nature Chemical Biology, vol.38, issue.8, pp.551-559, 2009.
DOI : 10.1038/nchembio.202

B. Ma and R. Nussinov, Enzyme dynamics point to stepwise conformational selection in catalysis, Current Opinion in Chemical Biology, vol.14, issue.5, pp.652-661, 2010.
DOI : 10.1016/j.cbpa.2010.08.012

Y. Liu and I. Bahar, Sequence Evolution Correlates with Structural Dynamics, Molecular Biology and Evolution, vol.29, issue.9, pp.2253-63, 2012.
DOI : 10.1093/molbev/mss097

J. Marsh and S. Teichmann, Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure, BioEssays, vol.29, issue.2, p.24272815, 2014.
DOI : 10.1002/bies.201300134

S. Maguid, S. Fernandez-alberti, L. Ferrelli, and J. Echave, Exploring the Common Dynamics of Homologous Proteins. Application to the Globin Family, Biophysical Journal, vol.89, issue.1, pp.3-13, 2005.
DOI : 10.1529/biophysj.104.053041

S. Maguid, S. Fernández-alberti, G. Parisi, and J. Echave, Evolutionary Conservation of Protein Backbone Flexibility, Journal of Molecular Evolution, vol.58, issue.4, pp.448-57, 2006.
DOI : 10.1007/s00239-005-0209-x

F. Raimondi, M. Orozco, and F. Fanelli, Deciphering the Deformation Modes Associated with Function Retention and Specialization in Members of the Ras Superfamily, Structure, vol.18, issue.3, pp.402-416, 2010.
DOI : 10.1016/j.str.2009.12.015

E. Marcos, R. Crehuet, and I. Bahar, On the Conservation of the Slow Conformational Dynamics within the Amino Acid Kinase Family: NAGK the Paradigm, PLoS Computational Biology, vol.14, issue.4, p.20386738, 2010.
DOI : 10.1371/journal.pcbi.1000738.s003

E. Luebbering, M. J. Singh, R. Tanner, J. Mehra-chaudhary, R. Beamer et al., Conservation of functionally important global motions in an enzyme superfamily across varying quaternary structures, J Mol Biol. Elsevier Ltd, vol.2012, issue.423, pp.831-877

S. Maguid, S. Fernandez-alberti, and J. Echave, Evolutionary conservation of protein vibrational dynamics, Gene, vol.422, issue.1-2
DOI : 10.1016/j.gene.2008.06.002

A. Zen, V. Carnevale, A. Lesk, and C. Micheletti, Correspondences between low-energy modes in enzymes: Dynamics-based alignment of enzymatic functional families, Protein Science, vol.93, issue.5, pp.918-929, 2008.
DOI : 10.1110/ps.073390208

A. Pang, Y. Arinaminpathy, M. Sansom, and P. Biggin, Comparative molecular dynamics?similar folds and similar motions? Proteins, p.16231327, 2005.
DOI : 10.1002/prot.20672

A. Leo-macias, P. Lopez-romero, D. Lupyan, D. Zerbino, and A. Ortiz, An Analysis of Core Deformations in Protein Superfamilies, Biophysical Journal, vol.88, issue.2, pp.1291-1300, 2005.
DOI : 10.1529/biophysj.104.052449

J. Velázquez-muriel, M. Rueda, I. Cuesta, A. Pascual-montano, M. Orozco et al., Comparison of molecular dynamics and superfamily spaces of protein domain deformation, BMC Structural Biology, vol.9, issue.1, 2009.
DOI : 10.1186/1472-6807-9-6

D. Tobi and I. Bahar, Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state, Proceedings of the National Academy of Sciences, vol.102, issue.52, pp.18908-18913, 2005.
DOI : 10.1073/pnas.0507603102

I. Bahar, T. Lezon, L. Yang, and E. Eyal, Global Dynamics of Proteins: Bridging Between Structure and Function, Annual Review of Biophysics, vol.39, issue.1, pp.23-42, 2010.
DOI : 10.1146/annurev.biophys.093008.131258

S. Hollup, E. Fuglebakk, W. Taylor, and N. Reuter, Exploring the factors determining the dynamics of different protein folds, Protein Science, vol.35, issue.1, pp.197-209, 2011.
DOI : 10.1002/pro.558

J. Echave, Why are the low-energy protein normal modes evolutionarily conserved?, Pure and Applied Chemistry, vol.84, issue.9, pp.1931-1937, 2012.
DOI : 10.1351/PAC-CON-12-02-15

D. Liberles, I. Bahar, U. Bastolla, J. Bloom, and E. Bornberg-bauer, The interface of protein structure, protein biophysics, and molecular evolution, Protein Science, vol.312, issue.6, pp.769-85, 2012.
DOI : 10.1002/pro.2071

J. Echave and F. Fernández, A perturbative view of protein structural variation, Proteins: Structure, Function, and Bioinformatics, vol.17, issue.1, pp.173-80, 2010.
DOI : 10.1002/prot.22553

J. Lai, J. J. Kubelka, J. Liberles, and D. , A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function, J Mol Biol. Elsevier Ltd, vol.2012, issue.422, pp.442-59

A. Ramanathan and P. Agarwal, Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis, PLoS Biology, vol.43, issue.1, p.22087074, 2011.
DOI : 10.1371/journal.pbio.1001193.s029

O. Keskin, R. Jernigan, and I. Bahar, Proteins with Similar Architecture Exhibit Similar Large-Scale Dynamic Behavior, Biophysical Journal, vol.78, issue.4, pp.2093-2106, 2000.
DOI : 10.1016/S0006-3495(00)76756-7

M. Münz, R. Lyngsø, J. Hein, and P. Biggin, Dynamics based alignment of proteins: an alternative approach to quantify dynamic similarity, BMC Bioinformatics, vol.11, p.20398246, 2010.

G. Bhabha, D. Ekiert, M. Jennewein, C. Zmasek, L. Tuttle et al., Divergent evolution of protein conformational dynamics in dihydrofolate reductase, Nature Structural & Molecular Biology, vol.92, issue.11, pp.1243-1252, 2013.
DOI : 10.1073/pnas.120163297

E. Dellus-gur, A. Toth-petroczy, M. Elias, and D. Tawfik, What Makes a Protein Fold Amenable to Functional Innovation? Fold Polarity and Stability Trade-offs, Journal of Molecular Biology, vol.425, issue.14, pp.2609-2630
DOI : 10.1016/j.jmb.2013.03.033

P. Gatti-lafranconi and F. Hollfelder, Flexibility and Reactivity in Promiscuous Enzymes, ChemBioChem, vol.130, issue.3, pp.285-92, 2013.
DOI : 10.1002/cbic.201200628

M. Münz, J. Hein, and P. Biggin, The Role of Flexibility and Conformational Selection in the Binding Promiscuity of PDZ Domains, PLoS Computational Biology, vol.17, issue.11, p.23133356, 2012.
DOI : 10.1371/journal.pcbi.1002749.s003

N. Tokuriki and D. Tawfik, Protein Dynamism and Evolvability, Science, vol.324, issue.5924, pp.203-207, 2009.
DOI : 10.1126/science.1169375

A. Pandini, G. Mauri, A. Bordogna, and L. Bonati, Detecting similarities among distant homologous proteins by comparison of domain flexibilities, Protein Engineering Design and Selection, vol.20, issue.6, pp.285-99, 2007.
DOI : 10.1093/protein/gzm021

P. Gherardini and M. Helmer-citterich, Structure-based function prediction: approaches and applications, Briefings in Functional Genomics and Proteomics, vol.7, issue.4, pp.291-302, 2008.
DOI : 10.1093/bfgp/eln030

U. Hensen, T. Meyer, J. Haas, R. R. Vriend, G. Grubmüller et al., Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function, PLoS ONE, vol.24, issue.5, p.22606222, 2012.
DOI : 10.1371/journal.pone.0033931.s010

D. Tobi, Dynamics alignment: Comparison of protein dynamics in the scop database, Proteins: Structure, Function, and Bioinformatics, vol.17, issue.1-2, pp.1167-76, 2012.
DOI : 10.1002/prot.24017

C. Micheletti, Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments, Phys Life Rev. Elsevier B.V, vol.10, 2013.

R. Potestio, T. Aleksiev, F. Pontiggia, S. Cozzini, and C. Micheletti, ALADYN: a web server for aligning proteins by matching their large-scale motion, Nucleic Acids Research, vol.38, issue.Web Server, pp.41-46, 2010.
DOI : 10.1093/nar/gkq293

D. Tobi, Normal Mode Dynamics Comparison of Proteins, Israel Journal of Chemistry, vol.315, issue.8-9, pp.1118-1125, 2014.
DOI : 10.1002/ijch.201300142

A. Bakan, L. Meireles, and I. Bahar, ProDy: Protein Dynamics Inferred from Theory and Experiments, Bioinformatics, vol.27, issue.11, pp.1575-1582, 2011.
DOI : 10.1093/bioinformatics/btr168

A. Bakan, A. Dutta, W. Mao, Y. Liu, C. Chennubhotla et al., Evol and ProDy for bridging protein sequence evolution and structural dynamics, Bioinformatics, vol.30, issue.18, pp.2681-2684, 2014.
DOI : 10.1093/bioinformatics/btu336

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-277, 2000.
DOI : 10.1093/nar/28.1.235

B. Hess, C. Kutzner, D. Van-der-spoel, and L. E. Gromacs, GROMACS 4:?? Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.
DOI : 10.1021/ct700301q

H. Berendsen, D. Van-der-spoel, R. Van-drunen, and . Gromacs, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, issue.1-3, pp.43-56, 1995.
DOI : 10.1016/0010-4655(95)00042-E

E. Lindahl and B. Hess, Van Der Spoel D. GROMACS 3 . 0 : a package for molecular simulation and trajectory analysis, J Mol Model, vol.43, pp.306-317, 2001.

K. Lindorff-larsen, S. Piana, K. Palmo, P. Maragakis, J. Klepeis et al., Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins: Structure, Function, and Bioinformatics, vol.105, pp.1950-1958, 2010.
DOI : 10.1002/prot.22711

H. Berendsen, J. Grigera, and T. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry, vol.91, issue.24, pp.6269-6271, 1987.
DOI : 10.1021/j100308a038

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.17212484, 2007.
DOI : 10.1063/1.2408420

H. Berendsen, J. Postma, W. Van-gunsteren, A. Dinola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, p.3684, 1984.
DOI : 10.1063/1.448118

B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, LINCS: A linear constraint solver for molecular simulations, 12<1463::AID-JCC4>3.0.CO, pp.1463-1472, 1997.

D. Xu, Q. Cui, and H. Guo, Quantum mechanical/molecular mechanical studies of zinc hydrolases, International Reviews in Physical Chemistry, vol.42, issue.1, pp.1-41, 2014.
DOI : 10.1021/ja403293d

D. Holland, A. Hausrath, D. Juers, and B. Matthews, Structural analysis of zinc substitutions in the active site of thermolysin, Protein Science, vol.26, issue.10, pp.1955-1965, 1995.
DOI : 10.1002/pro.5560041001

P. Doruker, A. Atilgan, and I. Bahar, Dynamics of proteins predicted by molecular simulations and analytical approaches: Application to alpha-amylase inhibitor, 3<512::AID-PROT180>3.0.CO;2-M PMID, pp.512-524, 2000.

R. Atilgan-a, S. Durell, R. Jernigan, M. Demirel, O. Keskin et al., Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model, Biophysical Journal, vol.80, issue.1, pp.505-515, 2001.
DOI : 10.1016/S0006-3495(01)76033-X

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Engineering Design and Selection, vol.14, issue.1, pp.1-6, 2001.
DOI : 10.1093/protein/14.1.1

A. Amadei, M. Ceruso, D. Nola, and A. , On the convergence of the conformational coordinates basis set obtained by the Essential Dynamics analysis of proteins' molecular dynamics simulations, 4<419::AID- PROT5>3.0.CO;2-U PMID, pp.419-4241097, 1999.

B. Hess, Convergence of sampling in protein simulations. Phys Rev E?Stat Nonlinear, Soft Matter Phys, vol.65, 2002.

L. Holm and J. Park, DaliLite workbench for protein structure comparison, Bioinformatics, vol.16, issue.6, pp.566-567, 2000.
DOI : 10.1093/bioinformatics/16.6.566

C. Micheletti, P. Carloni, and A. Maritan, Accurate and efficient description of protein vibrational dynamics: Comparing molecular dynamics and Gaussian models, Proteins: Structure, Function, and Bioinformatics, vol.87, issue.3, pp.635-680, 2004.
DOI : 10.1002/prot.20049

A. Zen, V. Carnevale, A. Lesk, and C. Micheletti, Correspondences between low-energy modes in enzymes: Dynamics-based alignment of enzymatic functional families, Protein Science, vol.93, issue.5, pp.918-929, 2008.
DOI : 10.1110/ps.073390208

E. Fuglebakk, N. Reuter, and K. Hinsen, Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions, Journal of Chemical Theory and Computation, vol.9, issue.12, pp.5618-5628, 2013.
DOI : 10.1021/ct400399x

V. Pelmenschikov, M. Blomberg, and P. Siegbahn, A theoretical study of the mechanism for peptide hydrolysis by thermolysin, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.3, pp.284-98, 2002.
DOI : 10.1007/s007750100295

J. Blumberger, G. Lamoureux, and M. Klein, Peptide Hydrolysis in Thermolysin:?? Ab Initio QM/MM Investigation of the Glu143-Assisted Water Addition Mechanism, Journal of Chemical Theory and Computation, vol.3, issue.5, pp.1837-1850, 2007.
DOI : 10.1021/ct7000792

A. Bakan and I. Bahar, The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding, Proceedings of the National Academy of Sciences, vol.106, issue.34, pp.14349-54, 2009.
DOI : 10.1073/pnas.0904214106

L. Yang, G. Song, A. Carriquiry, and R. Jernigan, Close Correspondence between the Motions from Principal Component Analysis of Multiple HIV-1 Protease??Structures and Elastic Network Modes, Structure, vol.16, issue.2, p.18275822, 2008.
DOI : 10.1016/j.str.2007.12.011

L. Meireles, M. Gur, A. Bakan, and I. Bahar, Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins, Protein Science, vol.324, issue.10, pp.1645-58, 2011.
DOI : 10.1002/pro.711

T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins: Structure, Function, and Genetics, vol.82, issue.3, pp.205-217, 1991.
DOI : 10.1002/prot.340110305

W. Kester and B. Matthews, Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis, Biochemistry, vol.16, issue.11, pp.2506-2516, 1977.
DOI : 10.1021/bi00630a030

A. Hausrath and B. Matthews, Thermolysin in the absence of substrate has an open conformation, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.6
DOI : 10.1107/S090744490200584X

D. Holland, D. Tronrud, H. Pley, K. Flaherty, W. Stark et al., Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis, Biochemistry, vol.31, issue.46, pp.11310-11316, 1992.
DOI : 10.1021/bi00161a008

D. Van-aalten, A. Amadei, B. Eijsink, V. Vriend, G. Berendsen et al., The essential dynamics of thermolysin: Confirmation of the hinge-bending motion and comparison of simulations in vacuum and water, Proteins: Structure, Function, and Genetics, vol.206, issue.1, pp.45-54, 1995.
DOI : 10.1002/prot.340220107

B. Amadei-a and H. Berendsen, Essential dynamics of proteins, Proteins: Structure, Function, and Genetics, vol.158, issue.4, pp.412-437, 1993.
DOI : 10.1002/prot.340170408

I. Daidone and A. Amadei, Essential dynamics: foundation and applications, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.130, issue.5, pp.762-770, 2012.
DOI : 10.1002/wcms.1099

E. Ermakova and R. Kurbanov, Effect of ligand binding on the dynamics of trypsin. Comparison of different approaches, Journal of Molecular Graphics and Modelling, vol.49, pp.99-109, 2014.
DOI : 10.1016/j.jmgm.2014.02.001

L. Skjaerven, A. Martinez, and N. Reuter, Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit, Proteins: Structure, Function, and Bioinformatics, vol.2, issue.1, pp.232-243, 2011.
DOI : 10.1002/prot.22875

DOI : 10.1142/9789814335058_0020

E. Fuglebakk, J. Echave, and N. Reuter, Measuring and comparing structural fluctuation patterns in large protein datasets, Bioinformatics, vol.28, issue.19, pp.2431-2471, 2012.
DOI : 10.1093/bioinformatics/bts445

I. Bahar, C. Chennubhotla, and T. D. , Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation, Current Opinion in Structural Biology, vol.17, issue.6, pp.633-640, 2007.
DOI : 10.1016/j.sbi.2007.09.011

E. Eyal, L. Yang, and I. Bahar, Anisotropic network model: systematic evaluation and a new web interface, Bioinformatics, vol.22, issue.21, pp.2619-2646, 2006.
DOI : 10.1093/bioinformatics/btl448

E. Fuglebakk, N. Reuter, and K. Hinsen, Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions, Journal of Chemical Theory and Computation, vol.9, issue.12, pp.5618-5628, 2013.
DOI : 10.1021/ct400399x

M. Rueda, P. Chacón, and M. Orozco, Thorough Validation of Protein Normal Mode Analysis: A Comparative Study with Essential Dynamics, Structure, vol.15, issue.5, pp.565-575, 2007.
DOI : 10.1016/j.str.2007.03.013

D. Riccardi, Q. Cui, and G. Phillips, Evaluating Elastic Network Models of Crystalline Biological Molecules with Temperature Factors, Correlated Motions, and Diffuse X-Ray Scattering, Biophysical Journal, vol.99, issue.8, pp.2616-2625, 2010.
DOI : 10.1016/j.bpj.2010.08.013

T. Romo and A. Grossfield, Validating and improving elastic network models with molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics, vol.95, issue.1, pp.23-34, 2011.
DOI : 10.1002/prot.22855

N. Leioatts, T. Romo, and A. Grossfield, Elastic Network Models Are Robust to Variations in Formalism, Journal of Chemical Theory and Computation, vol.8, issue.7, pp.2424-2434, 2012.
DOI : 10.1021/ct3000316

S. Kundu, J. Melton, D. Sorensen, and G. Phillips, Dynamics of Proteins in Crystals: Comparison of Experiment with Simple Models, Biophysical Journal, vol.83, issue.2, pp.723-732, 2002.
DOI : 10.1016/S0006-3495(02)75203-X

L. Yang, E. Eyal, C. Chennubhotla, J. Jee, A. Gronenborn et al., Insights into Equilibrium Dynamics of Proteins from Comparison of NMR and X-Ray Data with Computational Predictions, Structure, vol.15, issue.6, pp.741-749, 2007.
DOI : 10.1016/j.str.2007.04.014

M. Gur, E. Zomot, and I. Bahar, Global motions exhibited by proteins in micro- to milliseconds simulations concur with anisotropic network model predictions, The Journal of Chemical Physics, vol.139, issue.12, p.24089724, 2013.
DOI : 10.1063/1.4816375

L. Yang and I. Bahar, Coupling between Catalytic Site and Collective Dynamics: A Requirement for Mechanochemical Activity of Enzymes, Structure, vol.13, issue.6, pp.893-904, 2005.
DOI : 10.1016/j.str.2005.03.015

A. Dutta and I. Bahar, Metal-Binding Sites Are Designed to Achieve Optimal Mechanical and Signaling Properties, Structure, vol.18, issue.9, pp.1140-1148, 2010.
DOI : 10.1016/j.str.2010.06.013

A. Bakan, L. Meireles, and I. Bahar, ProDy: Protein Dynamics Inferred from Theory and Experiments, Bioinformatics, vol.27, issue.11, pp.1575-1582, 2011.
DOI : 10.1093/bioinformatics/btr168

I. Bahar, T. Lezon, A. Bakan, and I. Shrivastava, Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins, Chemical Reviews, vol.110, issue.3, pp.1463-97, 2010.
DOI : 10.1021/cr900095e

A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin et al., Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model, Biophysical Journal, vol.80, issue.1, 2001.
DOI : 10.1016/S0006-3495(01)76033-X

C. Brown, K. Madauss, W. Lian, M. Beck, W. Tolbert et al., Structure of neurolysin reveals a deep channel that limits substrate access, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3127-3159, 2001.
DOI : 10.1073/pnas.051633198

J. Arndt, B. Hao, V. Ramakrishnan, T. Cheng, S. Chan et al., Crystal Structure of a Novel Carboxypeptidase from the Hyperthermophilic Archaeon Pyrococcus furiosus, Structure, vol.10, issue.2, pp.215-239, 2002.
DOI : 10.1016/S0969-2126(02)00698-6

R. Natesh, S. Schwager, E. Sturrock, and K. Acharya, Crystal structure of the human angiotensin-converting enzyme???lisinopril complex, Nature, vol.11, issue.6922, pp.551-554, 2003.
DOI : 10.1107/S0907444998003254

M. Lee, C. Isaza, J. White, R. Chen, G. Liang et al., Insight into the substrate length restriction of M32 carboxypeptidases: Characterization of two distinct subfamilies, Proteins: Structure, Function, and Bioinformatics, vol.184, issue.3, pp.647-57, 2009.
DOI : 10.1002/prot.22478

M. Comellas-bigler, R. Lang, W. Bode, and K. Maskos, Crystal Structure of the E.coli Dipeptidyl Carboxypeptidase Dcp: Further Indication of a Ligand-dependant Hinge Movement Mechanism, Journal of Molecular Biology, vol.349, issue.1, pp.99-112, 2005.
DOI : 10.1016/j.jmb.2005.03.016

R. Etges, J. Bouvier, and C. Bordier, The major surface protein of Leishmania promastigotes is a protease, J Biol Chem, vol.261, pp.9098-101, 1986.

E. Schlagenhauf, R. Etges, and P. Metcalf, The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63), Structure, vol.6, issue.8, pp.1035-1081, 1998.
DOI : 10.1016/S0969-2126(98)00104-X

G. Bianchini, A. Bocedi, P. Ascenzi, E. Gavuzzo, F. Mazza et al., Molecular dynamics simulation of Leishmania major surface metalloprotease GP63 (leishmanolysin), Proteins: Structure, Function, and Bioinformatics, vol.277, issue.2, pp.385-390, 2006.
DOI : 10.1002/prot.21009