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Abstract

The genealogy at a single locus of a constant size N population in equilibrium is
given by the well-known Kingman’s coalescent. When considering multiple loci under
recombination, the ancestral recombination graph encodes the genealogies at all
loci in one graph. For a continuous genome G, we study the tree-valued process
(T N

u )u∈G of genealogies along the genome in the limit N → ∞. Encoding trees as
metric measure spaces, we show convergence to a tree-valued process with càdlàg
paths. In addition, we study mixing properties of the resulting process for loci which
are far apart.
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1 Introduction

A large body of literature within the area of mathematical population genetics is
dealing with models for populations of constant size. While finite models such as
the Wright-Fisher or the Moran model all have their specificities, the limit of large
populations – given some moments are bounded – leads to a unified framework with
diffusions and genealogical trees as their main tools; see e.g. Ewens (2004). In finite
population models of size N – frequently denoted Cannings models (Cannings, 1974)
– the offspring distribution of all individuals in each generation is exchangeable and
subject to the constraint of a constant population size.

Neutral evolution accounts for the fact that all individuals have the same chance to
produce offspring in next generations. Recombination is the evolutionary force by which
genetic material from more than one (i.e. two in all biologically relevant cases) parents
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A mixing tree-valued process

is mixed in their offspring. Genealogies under neutral evolution without recombination
are given through the famous Kingman coalescent (Kingman, 1982), a random binary
tree where pairs of lines merge exchangeably in a Markovian fashion. Genealogies
under recombination must deal with the fact that recombination events mix up genetical
material from the parents. As a consequence, lines not only merge due to joint ancestry,
but also split due to different ancestors for the genetic material along the genome. The
resulting genealogy is encoded in the Ancestral Recombination Graph (ARG), which
appeared already in Hudson (1983), but entered the mathematical literature only in
Griffiths (1991); Griffiths and Marjoram (1997). This graph gives the genealogies of all
genetic loci under stationarity at once; see also Figure 1.

The sequence of genealogies along the chromosome is most important for biological
applications, and fast simulation and inference of such genealogies is a major research
topic today (Rasmussen et al., 2014). While the ARG gives the sequence of genealogies
from the present to the past, a construction of genealogies along the chromosome is
possible as well (Wiuf and Hein, 1999; Leocard and Pardoux, 2010). The advantage
of the latter approach is that it allows to approximate the full sequence by ignoring
long-range dependencies, a fruitful research topic started by McVean and Cardin (2005).

The goal of the present paper is to study the sequence of genealogies along the
genome, denoted G, in the limit N → ∞. Precisely, we will use the notion of (ultra-)
metric measure spaces, introduced in the probabilistic community by Greven et al.
(2009), in order to formalize genealogical trees, read off the sequence (T N

u )u∈G from
the ARG and let N → ∞. As main results, we obtain convergence (Theorem 3.3) to
an ergodic tree-valued process which has càdlàg paths and study its mixing properties
(Theorem 3.5). We start by introducing our notation.

Remark 1.1 (Notation). Let (E, r) be a metric space. We denote byM1(E) the space
of probability measures on E equipped with the Borel-σ-algebra B(E). The space Cb(E)

consists of all continuous, bounded, real-valued functions defined on E. For a second
metric space (F, rF ) and µ ∈ M1(E) and a measurable map ϕ : E → F , the measure
ϕ∗µ is the push-forward of µ under ϕ. We denote vectors (x1, x2, . . . ) ∈ EN by x and
integrals will be frequently denoted by 〈ν, f〉 :=

∫
fdν. Weak convergence of probability

measures will be denoted by⇒. For I ⊆ R, the space DE(I) is the set of càdlàg functions
f : I → E.

2 Ancestry under recombination

For a set of loci G, also called genome in the sequel, we aim to study the ancestry
of individuals from a large population. The joint genealogy for all loci is given by the
ancestral recombination graph (Section 2.1), from which we can read off genealogical
trees at all loci u ∈ G (Section 2.2). In Section 2.3, we formalize random genealogies as
metric measure spaces.

2.1 The ancestral recombination graph

In this section we give a formal definition of the ancestral recombination graph (ARG)
which is a (slight) generalization of the definition from Griffiths and Marjoram (1997);
see also the leftmost branching and coalescing graph in Figure 1.

Definition 2.1 (N -ancestral recombination graph).

1. For a < b, G := [a, b], ρ > 0 and a finite set [N ] := {1, . . . , N}, the N -ancestral
recombination graph (ARG), denoted by A := AN := AN (G), starting with particles
in the set [N ] is defined by the following Markovian dynamics:

(i) When there are k ≥ 2 particles, two randomly chosen particles coalesce
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t

u1

u2

A := A5 Tu(A)
u<u1∧u2

Tu(A)
u1<u<u2

Tu(A)
u1∨u2<u

Figure 1: An example of an ARG A is given for N = 5 particles. From the resulting graph,
where splitting events are marked by u1 and u2 (with u1 < u2), trees can be read off by
using right and left particle at these splitting events. This results in three (realizations
of) 5-Kingman coalescents.

(merge) at rate
(
k
2

)
and give rise to a single new particle.

(ii) Each particle splits in two at rate ρ(b− a), resulting in a new left and a new
right particle. Such a splitting event is marked by an independent, uniformly
distributed random variable U ∈ G.

Denote by At the set of particles at time t ≥ 0 and stop when there is only one
particle left.

2. The particle-counting process N = (Nt)t≥0 with Nt = #At for A is a birth-and
death chain. Precisely, N has birth rate bk = ρ(b − a)k and death rate dk =

(
k
2

)
,

k = 1, 2, . . . and is stopped at T = inf{t : Nt = 1}.

Since the birth rates are linear and the death rates are quadratic, the expectation of the
stopping time T is finite; see Theorem 2.1 in Pardoux and Salamat (2009) for an explicit
expression.

Remark 2.2 (Interpretation). Clearly, within the above definition, some biological inter-
pretation can be given.

1. The set G is the genome, i.e. the set of all loci (for any individual within the
population). An element u ∈ G is called a locus.

2. The parameter ρ is the recombination coefficient per unit length.

3. The set [N ] represents N individuals sampled from a population and the particles
within At form the ancestry of the individuals from A0 at time t in the past.

4. A coalescence event within A indicates joint ancestry.

5. Instead of talking about left and right particles to follow within the ARG, the
biological language would rather suggest to talk about upstream and downstream
genomic sequences.
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A mixing tree-valued process

Remark 2.3 (ARG as a limiting graph, single crossovers).

1. The ARG arises as a limiting object within finite Moran models of population size
Ñ as Ñ →∞. In the model with recombination a finite population of Ñ individuals,
each carrying a genetic material indexed by G, undergoes the following dynamics:

(a) Every (unordered) pair of individuals resamples at rate 1, that is, one individ-
uals dies and is replaced by an offspring of the other individual. The offspring
carries the same genetic material as the parent.

(b) At rate ρ/Ñ , every (unordered) pair {`, j} of individuals resamples with re-
combination, that is, a resampling event occurs, individual j dies, say, a third
individual r (chosen uniformly at random from all individuals) and a random U ,
distributed uniformly on G, is chosen. Then, j is exchanged by an individual,
which carries genetic material [a, U) from ` and [U, b] from r.

When considering the history of a sample of N � Ñ individuals, two things can
happen: First, if a resampling event of two individuals within the sample is hit, these
individuals find a common ancestor, and their ancestral lines coalesce. Second, if a
line hits a resampling event with recombination, the history of its genetic material
is split at the corresponding U , and follows along two different lines. (Note that
this happens at rate (Ñ − 1)ρ/Ñ ≈ ρ.) These two lines have a high chance to be
outside the sample of N lines if N � Ñ . As we see, as Ñ → ∞, the ancestry is
properly described by the ARG as in Definition 2.1.

2. We assume here only single crossovers, i.e. the mix of the genetic material of `
and r is exactly as just described (rather than taking e.g. [a, U1] ∪ (U2, b] from ` and
(U1, U2] from r for some random variables a ≤ U1 < U2 ≤ b).

2.2 Trees derived from an ARG

In this section we describe sets of trees that can be read off from an ARG and discuss
some of their properties as well as different constructions of the ARG. A construction of
the ARG along the genome (see Remark 4.3) will be particularly useful in the sequel and
will be explained in more detail in Section 4.1.

Definition 2.4 (Genealogical trees read off from A). Let A = (At)t≥0 be an ancestral
recombination graph and B ⊆ [N ] be a subset of the initial particles. For u ∈ G we
read off the random tree Tu := T Bu := T Bu (A) (in the case B = [N ], we also write
Tu := T Nu := T Nu (A)) as follows:

(i) Start with particles in the set B and follow particles along A.

(ii) Upon coalescence events within A, followed particles are merged as well. If a
coalescence event within A only involves a single followed particle, continue to
follow the coalesced particle.

(iii) Upon a splitting event, consider its mark U . If u ≤ U , follow the left particle, and if
u > U , follow the right particle.

We denote by Tu,t := T Bu,t := T Bu,t(A) the set of particles in Tu at time t. We denote by •u
the root of Tu which is the most recent common ancestor (MRCA) of all leaves at locus u.

Remark 2.5 ((N -)coalescent). We will frequently use the notion of an N (-Kingman)-
coalescent. This is a random tree arising by the following particle picture: Starting
with N particles, each pair of particles coalesces exchangeably at rate 1. (Alternatively,
we may say that the total coalescence rate when there are k particles is

(
k
2

)
and upon
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a coalescence event, a random pair is chosen to coalesce.) The tree is stopped when
reaching a single particle which we denote by • in the sequel. It is well-known (see also
Example 2.13) that this random tree converges as N →∞ to the Kingman’s coalescent.

Remark 2.6 (Properties of T Bu (A)).

1. Since A is stopped upon reaching a single particle, and no splits occur within Tu,
the latter is certainly a tree. Moreover, its root may (see Tu for u < u1 ∧ u2 in
Figure 1) or may not (see Tu for u > u1 ∨ u2 in Figure 1) be identical to the node of
the stopping particle within A.

2. Note that forM = #B, each tree T Bu is anM -coalescent. Indeed, by exchangeability
within Kingman’s coalescent, any two particles within this tree coalesce at rate 1,
independently of all others.

Remark 2.7 (Unused branches of ARG). If R is the number of recombination events
in an ARG A, then we can bound the number of different trees in (T Nu (A))u∈G. When
following the left and right branches at each recombination point, we find 2R different
trees. However, since the R recombination points have marks U1, . . . , UR, there are at
most R + 1 different trees arising from u < U(1), U(i) ≤ u < U(i+1), i = 1, . . . , R − 1 and
u ≥ U(R) (where U(i) is the ith order statistic of U1, . . . , UR). However, it is possible that
a branch within A which is only followed when considering u ∈ (v, b] (for some v ∈ G)
carries a recombination event with mark U < v. In this case, T Nv− = T Nv+ which reduces
the number of different trees. For a lower bound of the number of different trees with R
recombination events in A, we find a minimum of two different trees within (T Nu (A))u∈G
if R > 0.

This somewhat inefficient procedure of generating recombination events which do not
take effect on the level of trees has the advantage of mathematical clarity and has been
used by Griffiths and Marjoram (1997). It is also possible to allow only recombination
events which are used when reading off the trees (T Nu (A))u∈G; see Hudson (1983). The
latter procedure has the advantage of being more efficient in simulations.

Remark 2.8 (Construction of (T Nu )u∈G along the genome). Instead of constructing the
process (T Nu )u∈G from the present to the past along the ARG A, Wiuf and Hein (1999)
have shown that there is also a construction along the genome. We will recall this
approach together with approximations of (T Nu )u∈G related to this construction in
Section 4.1.

Remark 2.9 (Outlook on Theorem 3.3). Before we go on with introducing more objects
needed to formulate our main results let us give an outlook on one of them.

1. Our goal is to study

convergence of the process (T Nu )u∈G as N →∞. (2.1)

Since T Nu is an N -coalescent for all u ∈ G, and as the convergence of the N -
coalescent to Kingman’s coalescent as N → ∞ is well-known, convergence of
finite-dimensional distributions in (2.1) is not surprising. However, we will also
show tightness of {(T Nu )u∈G : N ∈ N} in the space of càdlàg paths. This requires to
define a proper topology on the space of trees, which we will do in the next section.

2. In our formulation of Theorem 3.3, two different sets of trees derived from an ARG
will arise:

(a) For AN , we will consider
{T Nu (AN ) : u ∈ G},

which is the set of all trees with N leaves from an N -ARG.
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1 2 3 4 5 6

Figure 2: Two (interacting) trees with three leaves each read off from a joint ARG A6

starting with disjoint sets of leaves. The black tree (at locus u = 0) is T {1,2,3}0 (A6), while

the gray tree (at locus u = v) is T {4,5,6}v (A6).

(b) For An and n1, . . . , nj ∈ N with n1 + · · · + nj = n, consider a partition
{B1, . . . ,Bj} of [n] with #B1 = n1, . . . ,#Bj = nj and u1, . . . , uj ∈ G. Then,
we consider the trees

{T Bi
ui

(An) : i = 1, . . . , j}.

These trees arise when considering an n-ARG and partition its initial particles
into the sets B1, . . . ,Bj and following their ancestry. See Figure 2 for an
example of resulting trees and their interaction with each other.

2.3 Space of metric measure spaces

Any (finite or infinite) genealogical tree can be encoded by an (ultra-) metric space
(X, r) where X is the set of leaves and r is the genealogical distance. If we equip the set
of leaves with a sampling probability measure we obtain a metric measure space (X, r, µ).
Spaces of metric measure spaces were introduced and their topological properties were
studied in Gromov (2007)1 and Greven et al. (2009). We now recall the space of (isometry
classes of) metric measure spaces M, the Gromov-weak topology on M, and polynomials,
which form a convergence determining algebra of functions

Definition 2.10 (mm-spaces).

1. A metric measure space (mm-space) is a triple (X, r, µ) where (X, r) is a complete
and separable metric space and µ ∈ M1(X) with supp(µ) = X. Two mm-spaces
(X1, r1, µ1) and (X2, r2, µ2) are called measure-preserving isometric if there exists
an isometry ϕ between X1 and X2 so that µ2 = ϕ∗µ1.

2. Being measure preserving isometric is an equivalence relation and we denote the
equivalence class of (X, r, µ) by (X, r, µ) and write

M :=
{

x = (X, r, µ) : (X, r, µ) is a mm-space
}

(2.2)

for the space of measure preserving isometry classes of mm-spaces.

In order to define a topology on M, we use the notion of polynomials.

1The first edition of this book appeared in 1999. An even older french version from 1981 did not contain the
chapter about metric measure spaces.
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Definition 2.11 (Distance matrix distribution, polynomials and the Gromov-weak topol-
ogy). Let (X, r, µ) be a mm-space and x = (X, r, µ).

1. We define the function R := R(X,r) : XN → R
(N2)
+ by R(x) = (r(xi, xj))1≤i<j and

define the distance matrix distribution

νx = R∗µ
⊗N ∈M1

(
R

(N2)
+

)
.

2. A function Φ : M → R is called polynomial if there is a bounded measurable

function φ : R
(N2)
+ → R, depending only on finitely many coordinates, such that for

all x = (X, r, µ) ∈M we have

Φ(x ) = 〈µ⊗N, φ ◦R〉 = 〈νx , φ〉. (2.3)

The smallest n for which there is a function φ which depends only on coordinates
(rij)1≤i<j≤n so that (2.3) holds is called the degree of the polynomial Φ. We then
write Φn,φ instead of Φ to stress the dependence on n and φ. The space of bounded
continuous polynomials is denoted

Π0 :=
{

Φn,φ : n ∈ N, φ ∈ Cb(R
(N2)
+ )

}
. (2.4)

(Sometimes we will abuse notation and write φ((rij)1≤i<j≤n) := φ((rij)1≤i<j).)

3. The smallest topology on M for which all functions Π0 are continuous is called the
Gromov-weak topology. For this topology, xn

n→∞−−−−→ x if and only if νxn n→∞
===⇒ νx .

Remark 2.12 (Some properties of polynomials).

1. We stress that for x = (X, rµ), the measure R∗µ⊗N does not depend on the repre-
sentative and hence νx is well-defined.

2. Given two polynomials Φn,φ and Ψm,ψ one can show that the product Φn,φ ·Ψm,ψ is
a polynomial of degree n+m; see Remark 2.8(i) in Greven et al. (2013). The space
Π0 is an algebra which separates points; see Section 3 1

2 .5. in Gromov (2007) and
Proposition 2.6 in Greven et al. (2009).

3. The space M equipped with the Gromov-weak topology is Polish. Later in Section
2.4 we will give the Gromov-Prohorov metric onM, which is complete and metrizes
the Gromov-weak topology (see Theorem 5 and Proposition 5.6 in Greven et al.
(2009)). We will also give the Gromov-Hausdorff metric and other metrics on M,
which we will need in the formulation and proof of Theorem 3.3.

Example 2.13 (Kingman coalescent tree as a metric measure space). Consider the N -
coalescent from Remark 2.5. Let KN = [N ] = {1, . . . , N} be the set of leaves and let the
metric rN be the usual tree distance, i.e. rN (i, j) is twice the time to the MRCA of i and j,
1 ≤ i, j ≤ N . Finally, let µN be the uniform measure on KN . Then KN := (KN , rN , µN ) is
an equivalence class of a metric measure space. Furthermore, by Theorem 4 in Greven
et al. (2009) there exist an M-valued random variable K∞ such that

KN N→∞
====⇒ K∞. (2.5)

The limiting object K∞ is called the Kingman measure tree.
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2.4 Metrics on metric (measure) spaces

We now recall the definitions of several distances on M that we will use in the
sequel. While the Hausdorff distance is a metric on closed subsets of a metric space, the
Prohorov and total variation distances are metrics on probability measures on a metric
space. All three distances can be turned into distances on M.

Definition 2.14 (Hausdorff, Prohorov and total variation distances). Let (Z, d) be a metric
space and µ1, µ2 ∈M1(Z).

1. The Hausdorff distance between two non-empty subsets A,B ⊆ Z is defined by

dH(A,B) := inf{ε > 0 : A ⊆ Bε, B ⊆ Aε}. (2.6)

where for A ⊆ Z

Aε := {x ∈ Z : d(x,A) < ε} = {z ∈ Z : ∃y ∈ A, d(y, z) < ε}.

2. The Prohorov distance of µ1, µ2 is defined by

dP(µ1, µ2) := inf{ε > 0 : µ1(F ) ≤ µ2(F ε) + ε, ∀F ⊆ Z, closed }. (2.7)

3. The total variation distance of µ1, µ2 is defined by

dTV(µ1, µ2) := sup
A∈B(Z)

|µ1(A)− µ2(A)|. (2.8)

Remark 2.15 (Total variation distance).

1. If Z is finite, the total variation distance of probability measures µ1 and µ2 on Z is
given by

dTV(µ1, µ2) =
1

2

∑
z∈Z
|µ1({z})− µ2({z})|. (2.9)

2. Recall that the Prohorov distance of two probability measures is bounded by their
total variation distance.

For all three notions just defined, we now recall the corresponding “Gromov-versions”
which are (semi-)metrics onM. The idea is always to find an optimal isometric embedding
into a third metric space and compute there the usual distance of the images of the
spaces and measures.

Definition 2.16 (Gromov distances). Let x1 = (X1, r1, µ1) and x2 = (X2, r2, µ2) be mm-
spaces. Moreover, let ϕ1 : X1 → Z and ϕ2 : X2 → Z be isometric embeddings into a
common complete and separable metric space (Z, d).

1. The Gromov-Hausdorff distance of x1 and x2 is defined by

dGH(x1, x2) := inf
ϕ1,ϕ2,Z

dH(ϕ1(X1), ϕ2(X2)).

2. The Gromov-Prohorov metric of x1 and x2 is defined by

dGP(x1, x2) := inf
ϕ1,ϕ2,Z

dP((ϕ1)∗µ1, (ϕ2)∗µ2).

3. The Gromov total variation distance of x1 and x2 is defined by

dGTV(x1, x2) := inf
ϕ1,ϕ2,Z

dTV((ϕ1)∗µ1, (ϕ2)∗µ2).
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Remark 2.17 (Properties). Let us recall or rather state some known and some obvious
properties of the distances just introduced.

1. The distances dGH, dGP, dGTV are well-defined. As can be seen by considering
isometries between elements of one isometry class the distances do not depend on
the representative.

2. Since the Gromov-Hausdorff distance only uses the metric spaces (X1, r1) and
(X2, r2) but not the measures µ1, µ2, it is only a pseudo-metric on M.

3. According to Lemma 5.4 and Proposition 5.6 in Greven et al. (2009) the Gromov-
Prohorov metric dGP is indeed a metric on M and the metric space (M, dGP) is
complete and separable. Moreover, it metrizes the Gromov-weak topology by
Theorem 5 of Greven et al. (2009).

4. Since the Prohorov distance is bounded by the total variation distance, we also find
that

dGP(x1, x2) ≤ dGTV(x1, x2). (2.10)

This will be useful later since the total variation distance is usually easier to
compute or estimate than the Prohorov distance.

3 Main results

We now formalize the trees {T Nu (AN ) : u ∈ G} as mm-spaces. Our results, then,
are dealing with these M-valued random processes. In particular, Theorem 3.3 studies
convergence as N →∞. Since T Nu (AN ) is an N -coalescent for all u ∈ G, the resulting
process is stationary. It is even mixing, as Theorem 3.5 shows.

Definition 3.1 (Tu as an mm-space). Let A = AN (G) for N ∈ N and G = [a, b] with
a < b be an N -ARG. For u ∈ G and B ⊆ [N ], let T Bu (A) be as in Definition 2.4. As in
Example 2.13, let r be the usual tree-distance and µ the uniform measure on B. Then,
(B, r, µ) is a metric measure space. Its isometry class will be denoted Tu := T Bu := T Bu (A)

in the sequel. If B = [N ] we write Tu := T N
u := T N

u (A).

In Theorem 3.3, we need the notion of the variation of a function which we briefly recall.

Remark 3.2 (Variation). Let (E, r) be a metric space and f : I → E for I ⊂ R. The
variation of f with respect to r on subintervals [a, b] ⊂ I is defined by

Vb
a(f) := sup

{ k∑
i=1

r(f(ti), f(ti−1)) : k ∈ N, a = t0 < t1 < · · · < tk = b
}
. (3.1)

Theorem 3.3 (Convergence of N -ARGs). Let T N := (T N
u (A))u∈G be as in Definition 3.1.

Then, T N N→∞
====⇒ T on DM(G) for some process T . The (law of the) process T = (Tu)u∈G

is uniquely given as follows:
For each j ∈ N, u1, . . . , uj ∈ G, n1, . . . , nj ∈ N, let T Bi

ui
be as in Remark 2.9 and R

i
be the

distances of leaves Bi within T Bi
ui

. Then, for Φi = Φni,φi ∈ Π0, i = 1, . . . , j,

E[Φ1(Tu1) · · ·Φj(Tuj )] = E[φ1(R
1
) · · ·φj(Rj)]. (3.2)

The paths of T are almost surely of finite variation with respect to Gromov-Prohorov,
Gromov total variation and Gromov-Hausdorff metrics.
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Remark 3.4 (Path-properties of T ). We can ask about path-properties of the limiting
process T . Let us give an example: Let Nε

u be the number of ε-balls that are needed to
cover Tu. In other words Nε

u, is the number of families in Tu at some distance ε from the
leaves. For fixed u ∈ G, we know that Tu is a Kingman coalescent and hence we have

εNε
u

ε→0−−−→ 2 almost surely. (See e.g. (35) in Aldous (1999).) Is it also true that

P(εNε
u

ε→0−−−→ 2 for all u ∈ G) = 1?

Similar questions arise for well-known almost sure properties of Kingman’s coalescent
regarding the family-sizes near the leaves; see Aldous (1999), Chapter 4.2.

For our next result, we need to extend the ARG to G = (−∞,∞). This can be done using
some projective property (see also Lemma 4.11): Let Gn ↑ (−∞,∞). Clearly, (3.2) gives
the finite-dimensional distributions of (Tu)u∈Gn

for every n. In particular, for m < n, we
see that the projection of (Tu)u∈Gn

to {u ∈ Gm} is the same as (Tu)u∈Gm
and therefore

(3.2) defines a projective family of probability measures which can by Kolmogorov’s
extension Theorem be extended to the law of (Tu)u∈R.

Theorem 3.5 (Mixing properties). For n ∈ N let Ψ = Ψn,ψ and Φ = Φn,φ be polynomials of
(at most) degree n and (Tu)u∈G be the extension of the limit process T from Theorem 3.3
to G = R. Then, there exists a positive finite constant C only depending on n such that

|E[Ψ(T0)Φ(Tu)]−E[Ψ(T0)]E[Φ(Tu)]| ≤ C

ρ2u2
‖ψ‖∞‖φ‖∞, u > 0. (3.3)

Remark 3.6 (Dependency on n). In our proof we will show that (3.3) holds with C re-
placed by 2n4

9+7ρu+ρ2u2 ≤ 2n4/9. Therefore, the bound is only useful in the limit u→∞ for
fixed n. If n→∞ and u is fixed, the trivial bound |E[Ψ(T0)Φ(Tu)]−E[Ψ(T0)]E[Φ(Tu)]| ≤
2‖ψ‖∞‖φ‖∞ holds as well. It would be desirable to obtain a bound similar to (3.3) uni-
formly in n and u, but this seems to be out of reach with the techniques we develop
here.

4 Preliminaries

4.1 Construction of (T N
u )u∈G along the genome

In Wiuf and Hein (1999), a construction of an N -ARG was given, which results in
the same trees (T Nu )u∈G (or (T N

u )u∈G) in distribution as described in Definition 2.4 (and
Definition 3.1), but constructs this tree-valued process along the genome, i.e. by starting
at u ∈ G and then letting the trees evolve when moving along G. This construction
which we recall below will be helpful in all further proofs. See also Leocard and Pardoux
(2010).

Definition 4.1 (N -ARG’ along the genome).

1. For a < b,G = [a, b] andN ∈ N, construct an evolving pair (G, T ) = (Gn, Tn)n=0,1,2,...,
where Gn is a graph and Tn is a tree as follows:

2. Start with an N -coalescent G0 = T0 with set of leaves [N ] (which is continued
indefinitely, i.e. not stopped upon hitting a single line) and in each step do the
following (with U0 = a):

(a) Measure the length of the (vertical branches of the) graph Ln = L(Gn), choose
a uniformly distributed point Xn ∈ Gn and an independent exponential random
variable ξn.

(b) From Xn, change the graph as follows: Create a split event at Xn, and mark it
by Un = Un−1 + ξn/(Lnρ). The line in Gn which starts at Xn is called the left
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branch and a new right branch is created. Starting from this recombination
event, if we follow the new branch into the past (i.e. away from the leaves),
it coalesces with one of the other branches of Gn as in Kingman’s coalescent
tree, i.e. this branch coalesces with any of the other branches at rate 1, the
various possible coalescence times being mutually independent (and of course
only the shortest one is effective). The resulting graph is Gn+1 and Tn+1 is
given by following Tn until the right branch at Xn is hit and waiting until this
branch coalesces back with Tn. (There is a chance that Xn /∈ Tn; in this case
we have Tn+1 = Tn.)

Stop when Un > b and set G = Gn.

3. Let us now consider the final graph G. This is a coalescing-splitting random graph
(similar to A in Definition 2.1) and therefore can also be considered as an evolving
set of particles which coalesce and split, where splitting events are marked by
some element of G and are continued by a left and right branch. Hence, we can
define for a subset B ⊆ [N ] and u ∈ G the random tree Su := SBu := SBu (G) as in

Definition 2.4. Again, we set SNu := S [N ]
u .

Remark 4.2 (Properties of (SA0
u )u∈G).

1. From Wiuf and Hein (1999), the graphs A and G have the same distribution, hence
the same is true for the processes (T Nu )u∈G and (SNu )u∈G.

2. Let L ⊆ SNv be a line of length ` starting in some leaf x ∈ [N ] and reaching in the
direction of the root. Then, L ⊆ SNw for some w ∈ G if and only if no recombination
marks L before reaching w. By construction, this happens with probability e−ρ|w−v|`.
Moreover, let u < v < w. Then, (given SNv ), L ⊆ SNu with probability e−ρ|v−u|`,
independent of the event L ⊆ SNw .

3. By construction, G from above is an ARG and therefore, its length has finite
expectation. Hence, the construction above terminates almost surely.

Remark 4.3 (Approximating the ARG using a Markov process along the genome). One
striking feature of the construction of Wiuf and Hein (1999) is that it allows to approx-
imate (T Nu )u∈G by a Markov process by changing the dynamics of the construction
(Gn, Tn) in order to obtain a Markovian dynamics T = (Tn):

1. The following approximation was used by McVean and Cardin (2005): Instead
of (a) in Definition 4.1, measure the length of the (vertical branches of the) tree
Ln = L(Tn), choose a uniformly distributed point Xn ∈ Tn and an independent
exponential random variable ξn. Then, instead of (b), change the graph as follows:
Create a split event at Xn, and mark it by Un = Un−1 + ξn/(Lnρ). Delete the branch
which connects Xn to its ancestral node from Tn, all other lines are available
for coalescence. Then, start a new branch in Xn which coalesces with all other
available branches rate 1. The resulting tree is Tn+1. In particular, by only allowing
coalescences with T Nu , this approximation becomes a Markov process, also called
the Sequentially Markov Coalescent (SMC). (In SMC’, Chen et al. (2009) use
almost the same construction but without deleting the branch connecting Xn to
its ancestral node for the set of lines available for coalescence, leading to a better
approximation.)

2. Another simulation software based on the Markovian Coalescent Simulator (MaCS)
from Chen et al. (2009), has all lines from the last k genealogical trees as available
for coalescence after a recombination event.
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S2

S3

S4

S5

x1 x2 x3 x4 x5 x′4 x′5 x1 x2 x3 x4 x5

Figure 3: A conditional embedding of the trees S5u and S5v into a common tree.

While approximations such as SMC and MaCS make genome-wide computer simula-
tions under recombination feasible, their construction differs from the ARG at least
for loci which are far apart. In particular, Theorem 3.5 would not be true for these
approximations.

4.2 Conditional distances of trees and first upper bounds

To obtain useful bounds on expected tree distances introduced in the previous section
we will condition on one of the trees and use the construction of the tree-valued process
along the genome from Section 4.1. Let us start with an illustrative example.

Example 4.4 (A conditional embedding of two trees and upper bounds; Figure 3). Given
the tree S5u drawn in solid lines on the left of Figure 3, we can read off the times
S2, . . . , S5 which the tree spends with exactly 2, . . . , 5 lines. These random variables are
independent and each Sk is exponentially distributed with mean 1/

(
k
2

)
. The black bullet

indicates a recombination event with a mark between u and v, and S5v can be read off by
following the dashed line.

On the right hand side of Figure 3 the trees S5u (black) and S5v (gray) are embedded
into a common tree. The embedding of S5v into the common tree is given by xi 7→ xi, i =

1, 2, 3 and xi 7→ x′i, i = 4, 5. Using (2.10) and (4.1) below it is easily seen that if the trees
S5u and S5v are equipped with uniform probability measure, we have

dGP(S5u,S5v ) ≤ dGTV(S5u,S5v ) ≤ 2/5.

From the same embedding we see also that the Gromov-Hausdorff distance of S5u and
S5v , conditioned on S5u is bounded by the tree distance of {x′4, x′5} and x1 which is twice
the time of back coalescence of the dashed recombination line. Thus, in this particular
case we have dGH(S5u,S5v ) ≤ 2(S2 + · · ·+ S5). It could of course happen that the dashed
line coalesces back after the time of the MRCA of S5u. In this case the upper bound would
be 2(S1 + · · ·+ S5), where S1 is another independent exponentially distributed random
variable with mean 1.

First, we explain a way to compute the Gromov total variation distance explicitly.

Remark 4.5 (How to compute dGTV). If the spaces X1, X2 are finite with #X1 = #X2 =

N and µi is the uniform distribution on Xi, i = 1, 2, then one can compute the Gromov
total variation distance explicitly. There are isometric embeddings ϕi of Xi into a
common finite metric space (Z, d), i = 1, 2, so that Z can be decomposed in three disjoint
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sets Z = Z1 ] Z2 ] Zjoint with the property ϕi(Xi) = Zi ∪ Zjoint, i = 1, 2. The optimal
embeddings are the ones for which #Zjoint is maximal. Using such optimal embeddings
we have

dGTV(x1, x2) =
1

2
µ1(ϕ−11 (Z1)) +

1

2
µ2(ϕ−12 (Z2))

+
1

2

∑
z∈Zjoint

|µ1(ϕ−11 ({z}))− µ2(ϕ−12 ({z}))| = #Z1

N
=

#Z2

N
. (4.1)

As it turns out, to obtain upper bounds on Gromov total variation and therefore also the
Gromov-Prohorov distances it is helpful to introduce yet another distance which is only
well-defined on trees from the processes (T A0

u )u∈G.

Definition 4.6 (Auxiliary distance). Let (T Nu )u∈G and A be as in Definition 2.1. Recall
the MRCA within T Nu , denoted by •u, from Definition 2.4. For u, v ∈ G, we decompose
[N ] into two subsets:

1. We denote by [N ]•u,v the set of all x ∈ [N ] such that the path within T Nu from x to
•u is not hit by a splitting event marked with U ∈ [u ∧ v, u ∨ v].

2. Then [N ]c•u,v is the set of all x ∈ [N ] with such a splitting event on the path from x

to •u in T Nu .

We define

d•u,vaux (T Nu , T Nv ) :=
#[N ]c•u,v

N
. (4.2)

Proposition 4.7 (Properties of the auxuliary distance). Let dGTV be as in Definition 2.16,
daux, as in Definition 4.6, (T Nu )u∈G as in Definition 2.4 and T N

u = T Nu as in Definition 3.1.

1. The distance daux is an upper bound for dGTV in the sense that, for all u, v ∈ G

dGTV(T N
u , T N

v ) ≤ d•u,vaux (T Nu , T Nv )

2. For u, v, w ∈ G with u < v < w, the distances d•v,uaux (T Nu , T Nv ) and d•v,waux (T Nv , T Nw ) are
independent given T Nv .

Proof. 1. Since the Gromov-Total-Variation distance is defined as the infimum over all
embeddings into a common mm-space, it suffices to bound the Total-Variation distance
on a concrete embedding. Therefore, we use Remark 4.5 and write Z = Z1 ] Z2 ] Zjoint

with Zjoint = [N ]•u,v and Z1, Z2 are two copies of [N ]c•u,v. Distances on Zjoint within T Nu
and T Nv are identical by construction and we see from (4.1) that

dGTV(T N
u , T N

v ) ≤ dTV(T Nu , T Nv ) ≤ #Z1

N
=

#[N ]c•u,v
N

= d•uaux(T Nu , T Nv ).

2. From Definition 4.1 and Remark 4.2, we see that the triple (T Nu , T Nv , T Nw ) can be
constructed starting with T Nv (with a = v, b = w). The resulting graph G is then used
to again use the same procedure with initial state (G, T Nv ) and use the same procedure
(with a = v and b = u) this time moving to the left of v. In total, this results in marking
T Nv at rates ρ(w−v) and ρ(v−u) independently. Leaves which are marked at rate ρ(w−v)

(ρ(v − u)) until •v is hit, are elements of [N ]c•v,u ([N ]•v,w). Importantly, since the marking
on [u, v] and [v, w] are independent (given T Nv ) – see Remark 4.2 – the claim follows.

Remark 4.8 (Bound of dGTV by daux not sharp). It can be easily seen that the strict
inequality dGTV(T N

u , T N
v ) < d•u,vaux (T Nu , T Nv ) is possible. This happens for instance if the

dashed line in Figure 3 coalesces immediately with the same line.
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Proposition 4.9 (Bounds on daux). Let v, w ∈ G and (T Nu )u∈G be as in Definition 4.1.
For T Nv , let S2, S3, . . . be the duration for which 2, 3, . . . lines are present in the tree. We
have

E
[
d•v,waux (T Nv , T Nw )|T Nv

]
≤ ρ|w − v|

N∑
k=2

Sk. (4.3)

Proof. For x ∈ A0, let Lx ⊆ T Nv be the path from x to •v. Its length is given by the tree
height L := S2 + · · ·+ SN .

Given T Nv , x ∈ [N ]•v,w with probability 1 − e−ρ|w−v|L by Remark 4.2.2. Hence, by
exchangeability and the definition of daux,

E
[
d•v,waux (T Nv , T Nw )|T Nv

]
=

1

N

∑
x∈[N ]

P(x ∈ [N ]c•v,w) = 1− e−ρ|w−v|L ≤ ρ|w − v|L.

4.3 Projective properties of the ARG

It is well-known that Kingman’s coalescent is projective in the sense that the tree
spanned by a sample of n leaves from an N -coalescent has the same distribution as an
n-coalescent. The same holds for the ARG as we will show next.

Lemma 4.10 (Projectivity in N for the N -ARG). Let G = [a, b], ρ > 0 and A be an N -ARG
(with A0 = [N ] = {1, . . . , N}). Let B ⊆ [N ] with #B = n and let πBAN be the random
graph which arises from the particle system starting with particles B and following them
along A. (Upon coalescence events within AN , followed particles merge as well. If a
coalescence event within A only involves a single followed particle, continue to follow
the coalesced particle. Splitting events hitting a followed particle are followed as well.)
Then, πBAN is an n-ARG.

Proof. It suffices to consider the particle-counting process of πBAN since the fine-
structure of AN is exchangeable. Clearly, pairs of particles coalesce at rate 1 and every
particle splits at the same rate ρ(b− a). Hence, it coincides with the particle-counting
process of An and we are done.

The projectivity of the N -ARG along the genome is stated next:

Lemma 4.11 (Projectivity inG of the N -ARG). Let G = [a, b], ρ > 0, AN (G) be an N -ARG
and H = [c, d] ⊆ G. Let πHAN be the random graph which arises from the particle
system starting with particles [N ] and following them along A. (Upon coalescence
events within AN , followed particles merge as well. If a coalescence event within A only
involves a single followed particle, continue to follow the coalesced particle. Splitting
events hitting a followed particle are followed as well if the mark falls inH.) Then, πHAN
equals AN (H) in distribution.

Proof. It suffices to see that (i) the recombination events at loci in [a, b] \ [c, d] split off
ancestral material not in [c, d] and therefore don’t change the genealogical trees in πHAN
and (ii) coalescences with such lines don’t appear in genealogical trees in H. Leaving out
these recombination events hence leads to AN (H), so the claimed equality follows.

5 Proof of Theorem 3.3

The proof of Theorem 3.3 requires three steps. First, in order to obtain existence of
limiting processes along subsequences of (T N )N=1,2,..., we have to prove (see Section 5.1)

The family (T N )N=1,2,... is tight in DM(G). (5.1)
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Second, we show in Section 5.2

For any limiting process T along a subsequence of (T N )N=1,2,...,
(3.2) holds.

(5.2)

This equation determines uniquely the finite-dimensional distributions of T since polyno-
mials are separating; in particular, since the right hand side of (3.2) does not depend
on the subsequence, uniqueness of the limiting process follows. Third, bounds on the
variation process of T are given in Section 5.3 such that

The paths of T are a.s. of finite variation with respect to Gro-
mov total variation, Gromov-Prohorov and Gromov-Hausdorff
metrics.

(5.3)

5.1 Tightness in DM(G)

In order to prove tightness in the sense (5.1), we rely on Theorem 13.6 in Billingsley
(1999) (see also Theorem 3.8.8 in Ethier and Kurtz (1986)), i.e. we will show that there
is C > 0 such that

lim sup
N→∞

E[dGTV(T N
−h, T N

0 ) · dGTV(T N
0 , T N

h )] ≤ Ch2. (5.4)

Since dGP ≤ dGTV, this implies tightness with respect to the Gromov-weak topology.

We assume without loss of generality that the interval [−h, h] is contained in G. Note
also that (T N

u )u∈G is stationary. We combine Proposition 4.7 and Proposition 4.9 and
write, for Sk ∼ Exp

(
k
2

)
,

E[dGTV(T N
−h, T N

0 ) · dGTV(T N
0 , T N

h )] ≤ E[d•0,−haux (T N−h, T N0 ) · d•0,haux (T N0 , T Nh )]

= E
[
E[d•0,−haux (T N−h, T N0 )|T N0 ] · E[d•0,haux (T N0 , T Nh )|T N0 ]

]
≤ ρ2h2 · E

[( N∑
k=2

Sk

)2]
≤ 7ρ2h2.

The last estimate follows from the following elementary computation:

E

[( N∑
k=2

Sk)
)2]

=

N∑
k=2

E[S2
k] + 2

∑
2≤k<`≤N

E[Sk]E[S`]

≤
∞∑
k=2

E[S2
k] +

( ∞∑
k=2

E[Sk]
)2

=

∞∑
k=2

8

k2(k − 1)2
+
( ∞∑
`=2

2

`(`− 1)

)2
= 8
(π2

3
− 3
)

+ 4 < 7.

Therefore, we have proved (5.4).

5.2 Finite-dimensional distributions

Let Φi = Φni,φi , i = 1, . . . , j be (bounded) polynomials and (T N
u )u∈G be as in Definition

3.1 with T N
u = T Nu , where T Nu = ([N ], rNu , µ) is as in Definition 2.4. Then, µ is the uniform

distribution on [N ] and rNu gives distances between elements of [N ] in T Nu . Let

An,N =
⋃

1≤i<j≤n

{x ∈ [N ]n : xi = xj} ⊆ [N ]n
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be the event that some entry in x ∈ [N ]n appears twice. Then, we find that µ⊗n(An,N ) =

O(1/N) (for fixed n) as N → ∞. Therefore, by construction, setting xkl = (xk, . . . , xl)

and r(xkl, xkl) = (r(xi, xj))k≤i,j≤l, n0 = 0, ni = n1 + · · ·+ ni,

lim
N→∞

E[Φ1(T N
u1

) · · ·Φj(T N
uj

)] = lim
N→∞

E
[ j∏
i=1

∫
µni(dx1ni

)φi(r
N
ui

(x1ni
, x1ni

))
]

= lim
N→∞

E
[ ∫

µn(dx1n)

j∏
i=1

φi(r
N
ui

(xni−1,ni
, xni−1,ni

))
]

= lim
N→∞

E
[ ∫

µn(dx1n)1Ac
n,N

j∏
i=1

φi(r
N
ui

(xni−1,ni
, xni−1,ni

))/µn(Acn,N )
]

= E[φ1(R
1
) · · ·φj(Rj)].

5.3 Finite variation

In this subsection we prove the last part of Theorem 3.3, namely that the paths of
the process T = (Tu)u∈G are of finite variation with respect to Gromov total variation,
Gromov-Prohorov metric and Gromov-Hausdorff (semi-)metric onM. Recall the definition
of variation with respect to a metric in (3.1). First we show that for d ∈ {dGTV, dGP, dGH}
that for u, v ∈ G, u < v there is a positive finite constant C = C(ρ) such that

E[d(T N
u , T N

v )] ≤ C(v − u). (5.5)

Once this is proven for a metric d, for any interval [a, b] ⊂ G and a partition a = u0 <

u1 < · · · < uk = b of that interval we have by the first part of Theorem 3.3

E[d(Tui , Tui−1)] ≤ lim sup
N→∞

E[d(T N
ui
, T N
ui−1

)] ≤ C(ui − ui−1). (5.6)

Then it follows easily

E

[ k∑
i=1

d(Tui , Tui−1)
]
≤ C(b− a).

Since the right hand side does not depend on particular partition of [a, b], this shows that
the variation of T with respect to d has finite expectation on finite intervals. Thus, the
paths of T are almost surely of finite variation with respect d.

For Gromov total variation and Gromov-Prohorov metrics (5.5) follows from dGP ≤
dGTV ≤ daux and (4.3). For the Gromov-Hausdorff metric (5.5) is shown in the following
lemma.

Lemma 5.1. There is a positive finite constant C independent of N so that for any
u, v ∈ G, u < v we have

E[dGH(T Nu , T Nv )] ≤ Cρ(v − u). (5.7)

Proof. Given the tree T Nu as before we denote by S2, . . . , SN the time for which exactly
2, . . . , N lines are present in the tree (cf. Figure 3). The random variables S2, . . . , SN are
independent and Sk is exponentially distributed with mean 1/

(
k
2

)
.

Along the branches of T Nu recombination events occur at rate ρ(v − u). When a
recombination event occurs at level k, that is during the period of time with exactly k
lines in the tree T Nu , then the resulting extra line coalesces back into the tree T Nu at
some time after the recombination, that is at level ` for some 1 ≤ ` ≤ k. We also need to
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consider the level ` = 1 because it might be the case that the extra line coalesces back
into the tree T Nu after all lines of T Nu have coalesced with each other.

Let S1 be exponentially distributed with mean 1. Furthermore, for k ≥ 2 and 1 ≤ ` ≤ k
let Ak,` be the event that along the k branches of T Nu during time Sk, at least one
recombination event occurs that separates the trees T Nu and T Nv , and the resulting extra
line coalesces back into the tree T Nu during time S`. Figure 3 shows an example of the
event A3,2.

Then, ignoring the probability of no coalescence during Sk (hence bounding this
probability from above by 1),

P
[
Ak,`|T Nu

]
≤ (1− e−ρ(v−u)kSk)

k−1∏
m=`+1

e−mSm(1− e−`S`)

≤ ρ(v − u)kSk`S`

k−1∏
m=`+1

e−mSm .

Note that

E

[ k−1∏
m=`+1

e−mSm

]
=

k−1∏
m=`+1

1

1 + 2/(m− 1)
=

k−2∏
m=`

1

1 + 2/m

= exp
(
−

k−2∑
m=`

log(1 + 2/m)
)
≤ exp

(
−

k−2∑
m=`

1/m
)

≤ exp
(
−
∫ k−2

`

1
xdx

)
=

`

k − 2
.

Furthermore, given T Nu , on the event Ak,` we have

dGH(T Nu , T Nv ) ≤ 2

N∑
j=`

Sj .

It follows that for some C0, C1, C2, C3 > 0, which don’t depend on N , ρ, u and v,

lim sup
N→∞

E[dGH(T Nu , T Nv )] ≤ lim sup
N→∞

∑
`≤k≤N

E

[
2

N∑
j=`

Sj ;Ak,`

]

≤ lim sup
N→∞

C0

∑
`≤k≤N

N∑
j=`

E[Sj ]P
[
Ak,`

]
≤ lim sup

N→∞
C1ρ(v − u)

∑
`≤k≤N

N∑
j=`

k`
`/k(

j
2

)(
k
2

)(
`
2

)
≤ lim sup

N→∞
C2ρ(v − u)

∑
`≤k≤N

1

`k2
= C3ρ(v − u),

which shows the assertion.

6 Proof of Theorem 3.5

Theorem 3.5 claims that correlations between trees T0 and Tv decrease with O(1/v2).
Such correlations come with coalescence times present in T0 and Tv. Before we come to
the proof of Theorem 3.5, we study such joint coalescences.
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6.1 Covariances of coalescence times

Lemma 6.1 (Covariance of distances at u = 0 and u = v). Let Φ = Φ2,φ. Then,

P(Φ2,φ(T0) = Φ2,φ(Tv) for all φ) =
2

9 + 13ρv + 2ρ2v2
. (6.1)

Proof. From Theorem 3.3, we see that the left hand side of (6.1) is given as follows: Let
A4 be an ARG starting with four lines, R12,0 be the distance of the pair 1, 2 at u = 0

and R34,v the distance of 3, 4 at u = v. Then, using (3.2), Φ2,φ(T0) = Φ2,φ(Tv) for all φ
has the same probability as R12,0 = R34,v (recall that φ is a function in the definition of
polynomials is a function of pairwise distances; see (2.3)).

Hence, the LHS of (6.1) equals x, where

x = P(R12,0 = R34,v)

y = P(R12,0 = R23,v)

z = P(R12,0 = R12,v)

The first event in the ARG starting in four lines, can be:

(i) coalescence of one of the pairs (1,3), (2,3), (1,4), (2,4)

(ii) coalescence of one of the pairs (1,2), (3,4)

(iii) Some recombination event.

In case (iii), the probability x is not changed after the recombination event, in case
(ii), there is no way that the event R12,0 = R34,v (hence has probability 0). In case (i),
however, the probability is the same as in an ARG with three lines, that lines 1 and 2 at
locus 0 coalesce at the same time as lines 2 and 3 at locus v. This probability is defined
to be y. Similar arguments for a first-event-decomposition in the probabilities y and z
lead to

x =
2

3
y +

1

3
· 0,

y =
ρv

ρv + 3
x+

1

ρv + 3
z +

2

ρv + 3
· 0,

z =
2ρv

2ρv + 1
y +

1

2ρv + 1
· 1.

(6.2)

Solving this linear system gives the result.

Using the last lemma, we immediately obtain another useful result.

Corollary 6.2 (Samples of size n ≥ 2). Let n ≥ 2, A2n be a 2n-ARG, Rij,u be the distance
of the pair i, j at position u for u ∈ {0, v}. Then,

P(Rij,0 = Rk`,v for some 1 ≤ i < j ≤ n; n+ 1 ≤ k < ` ≤ 2n)

≤
(
n

2

)2
2

9 + 13ρv + 2ρ2v2
.

6.2 An auxiliary random graph

For the proof of Theorem 3.5, we recall the 2n-ARG A2n for loci v ∈ {0, u}. We let

Rij,v be the distance between i, j at locus v for v ∈ {0, u}. We set T0 = T {1,...,n}0 and

Tv = T {n+1,...,2n}
v (recall the notation from Definition 2.4). The following events can

happen:
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1. “Intra-tree” coalescence events: If in A2n two particles coalesce and both particles
belong to Tv, then the total number of particles and the number of particles in Tv
decreases, v ∈ {0, u}.

2. “Inter-tree” coalescence events: If two particles (in A2n) coalesce and one of the
particles is present in Tu \ T0, and the other is present in T0 \ Tu, then the total
number of particles decreases but the numbers of particles within T0 and Tu are
preserved.

3. “Splitting recombination” events: If a particle, present in the overlap of the trees
Tu ∩ T0, recombines with mark U ∈ [0, u], then the particle splits in two new
particles, one present in Tu \ T0, the other one present in T0 \ Tu.

We call a branch in A2n a single line if it belongs to (T0 \Tu)∪ (Tu \T0), whereas branches
in T0 ∩ Tu are called double lines. Intra-coalescence occur simultaneously within T0 and
Tu if two double lines coalesce. These are the events that make T0 and Tv dependent.
We will call such an event joint coalescence.

We now define a random graph Â2n based on A2n such that we can couple T0 and Tu
with two independent trees T̂0 and T̂u, both having the distribution of a Kingman’s
n-coalescent; see Lemma 6.5.

Definition 6.3 (An auxiliary random graph). Define a random graph Â2n, from which
two trees T̂0 and T̂u can be read off as in Definition 2.4, as follows: Starting with 2n

single lines, where 1, . . . , n ∈ T̂0 \ T̂u and n+ 1, . . . , 2n ∈ T̂u \ T̂0, the dynamics of the lines
in Â2n are as follows (see Figure 4):

(i) Each pair of single lines coalesces at rate 1. The result can be a single line (if both
lines belong to T̂0 or both to T̂u) or a double line.

(ii) Each pair of lines where one is a single line and the other a double line coalesces at
rate 1. The resulting line is a double line.

(iii) Each double line splits at rate ρu into two single lines.

(iv) Between each pair of double lines there is a coalescence/splitting event at rate
2. This event produces a double line and a single line. With probability 1/2 the
resulting single line is in T̂0 or in T̂u, respectively.

Remark 6.4 (Properties of T̂0 and T̂u). Note that the above dynamics in Â2n are the same
as in A2n except for the coalescence/splitting event described in (iv). The corresponding
event in A2n was called joint coalescence above. In particular, we remark that we can
perfectly couple A2n with Â2n until the first coalescence/splitting event occurs.

Lemma 6.5 (Properties of Â2n). We note the following properties of Â2n:

1. T̂0 and T̂u are independent and distributed as n-coalescents.

2. If we couple A2n and Â2n until the first event (iv) happens, and let them evolve
independently otherwise, then

{no event (iv) happens} ⊆ {T0 = T̂0} ∩ {Tu = T̂u}.

3. For n ≥ 2, there is C = C(n) > 0 such that

P(no event (iv) happens) ≤ C/(ρ2u2).
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Proof. 1. Obviously in Â2n each pair of lines in T̂0 coalesces at rate 1 and also each pair
of lines in T̂u coalesces at rate 1, so that both trees are Kingman’s coalescents, and the
trees are independent by construction.
2. Denoting by A the event that at a coalescence/splitting event in Â2n occurs, we have
A2n = Â2n on Ac by construction.
3. By construction, A occurs at rate 2 for every pair of lines within Zjoint. For non-

negative integers a, b and c we indicate by Pabc computations of probabilities within Â2n

with start in

• a single lines within T̂0,

• b double lines,

• c single lines within T̂u.

Then, for

x = P202(A), y = P111(A), z = P020(A),

we obtain the same set of equations as in (6.2) with the last one replaced by

z =
2ρu

2ρu+ 2
y +

2

2ρu+ 2
· 1.

Solving this system gives

x =
2

9 + 7ρu+ ρ2u2
,

which shows the assertion for n = 2. As in Corollary 6.2, we obtain for all n = 2, 3, . . .

P(some event (iv) happens) ≤
(
n

2

)2
2

9 + 7ρu+ ρ2u2

which concludes the proof.

6.3 Proof of Theorem 3.5

Let Ψ = Ψn,ψ and Φ = Φn,φ. According to Theorem 3.3, we need to consider a
2n-ARG A2n and let Rij,v be the distance between i, j at locus v for v ∈ {0, u}. Writing
R

0
:= (Rij,0)1≤i,j≤n, R

v
:= (Rij,v)n+1≤i,j≤2n, Theorem 3.3 gives

COV[Ψ(T0),Φ(Tu)] = COV[ψ(R
0
), φ(R

u
)]. (6.3)

Let T̂0, T̂u be as in Lemma 6.5, which are coupled with T0, Tu before the first coales-
cence/splitting event happens. Let R̂

0
and R̂

u
be the (finite) distance matrices that

correspond to T̂0 and T̂u. Slightly abusing the notation we write

ψ0 = ψ(R
0
), φu = φ(R

u
), ψ̂0 = ψ(R̂

0
) and φ̂u = φ(R̂

u
).

Denoting by A the event that a coalescence/splitting event in Â2n occurs, we have using
Lemma 6.5

E[ψ0φu] = E[ψ0φu1Ac ] +E[ψ0φu1A]

= E[ψ̂0φ̂u1Ac ] +E[ψ0φu1A]

= E[ψ̂0φ̂u]−E[ψ̂0φ̂u1A] +E[ψ0φu1A]

= E[ψ̂0]E[φ̂u]−E[ψ̂0φ̂u1A] +E[ψ0φu1A]

= E[ψ0]E[φu]−E[ψ̂0φ̂u1A] +E[ψ0φu1A].
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(i)
(i)

(iii)

(ii)

(iv)

Figure 4: Reading off trees at different loci starting with disjoint sets of leaves from
modified ARG Â2n with n = 3. Some of the events are annotated according to the
description. The dashed ellipsis encloses the event which is not possible in the original
ARG, cf. Figure 2.

It follows now that for C = 2P(A), we have

|E[ψ0φu]−E[ψ0]E[φu]| ≤ C‖ψ‖∞‖φ‖∞,

which, in view of Lemma 6.5.3. shows the assertion of Theorem 3.5 .
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