F. Boyer, G. Fichant, J. Berthod, Y. Vandenbrouck, and I. Attree, Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?, BMC Genomics, vol.10, issue.1, p.104, 2009.
DOI : 10.1186/1471-2164-10-104

URL : https://hal.archives-ouvertes.fr/hal-00377407

S. Coulthurst, The Type VI secretion system ??? a widespread and versatile cell targeting system, Research in Microbiology, vol.164, issue.6, pp.640-54, 2013.
DOI : 10.1016/j.resmic.2013.03.017

B. Ho, T. Dong, and J. Mekalanos, A View to a Kill: The Bacterial Type VI Secretion System, Cell Host & Microbe, vol.15, issue.1, pp.9-21, 2014.
DOI : 10.1016/j.chom.2013.11.008

A. Zoued, Y. Brunet, E. Durand, M. Aschtgen, and L. Logger, Architecture and assembly of the Type VI secretion system, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.8, pp.1664-73, 2014.
DOI : 10.1016/j.bbamcr.2014.03.018

URL : https://hal.archives-ouvertes.fr/hal-01458220

E. Durand, C. Cambillau, E. Cascales, and L. Journet, VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors, Trends in Microbiology, vol.22, issue.9, pp.498-507, 2014.
DOI : 10.1016/j.tim.2014.06.004

URL : https://hal.archives-ouvertes.fr/hal-01458195

S. Pukatzki, A. Ma, A. Revel, D. Sturtevant, and J. Mekalanos, Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin, Proceedings of the National Academy of Sciences, vol.104, issue.39, pp.15508-15513, 2007.
DOI : 10.1073/pnas.0706532104

A. Ma, S. Mcauley, S. Pukatzki, and J. Mekalanos, Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells, Cell Host & Microbe, vol.5, issue.3, pp.234-277, 2009.
DOI : 10.1016/j.chom.2009.02.005

E. Durand, E. Derrez, G. Audoly, S. Spinelli, and M. Ortiz-lombardia, Crystal Structure of the VgrG1 Actin Cross-linking Domain of the Vibrio cholerae Type VI Secretion System, Journal of Biological Chemistry, vol.287, issue.45, pp.38190-38199, 2012.
DOI : 10.1074/jbc.M112.390153

URL : https://hal.archives-ouvertes.fr/hal-01458244

N. Kapitein and A. Mogk, Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition, Current Opinion in Microbiology, vol.16, issue.1, pp.52-60, 2013.
DOI : 10.1016/j.mib.2012.11.009

A. Russell, S. Peterson, and J. Mougous, Type VI secretion system effectors: poisons with a purpose, Nature Reviews Microbiology, vol.8, issue.2, pp.137-185, 2014.
DOI : 10.1038/nrmicro3185

J. Benz and A. Meinhart, Antibacterial effector/immunity systems: it's just the tip of the iceberg, Current Opinion in Microbiology, vol.17, pp.1-10, 2014.
DOI : 10.1016/j.mib.2013.11.002

Y. Fu, M. Waldor, and J. Mekalanos, Tn-Seq Analysis of Vibrio cholerae Intestinal Colonization Reveals a Role for T6SS-Mediated Antibacterial Activity in the Host, Cell Host & Microbe, vol.14, issue.6, pp.652-63, 2013.
DOI : 10.1016/j.chom.2013.11.001

L. Ma, A. Hachani, J. Lin, A. Filloux, and E. Lai, Agrobacterium tumefaciens Deploys a Superfamily of Type VI Secretion DNase Effectors as Weapons for Interbacterial Competition In Planta, Cell Host & Microbe, vol.16, issue.1, pp.94-104, 2014.
DOI : 10.1016/j.chom.2014.06.002

A. Russell, R. Hood, N. Bui, M. Leroux, and W. Vollmer, Type VI secretion delivers bacteriolytic effectors to target cells, Nature, vol.124, issue.7356, pp.343-350, 2011.
DOI : 10.1038/nature10244

A. Russell, M. Leroux, K. Hathazi, D. Agnello, and T. Ishikawa, Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors, Nature, vol.277, issue.7446, pp.508-520, 2013.
DOI : 10.1038/nature12074

P. Leiman, M. Basler, U. Ramagopal, J. Bonanno, and J. Sauder, Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin, Proceedings of the National Academy of Sciences, vol.106, issue.11, pp.4154-4159, 2009.
DOI : 10.1073/pnas.0813360106

E. Cascales and C. Cambillau, Structural biology of type VI secretion systems, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.364, issue.2, pp.1102-1113, 2012.
DOI : 10.1016/j.jmb.2006.08.078

URL : https://hal.archives-ouvertes.fr/hal-01458261

M. Basler, M. Pilhofer, G. Henderson, G. Jensen, and J. Mekalanos, Type VI secretion requires a dynamic contractile phage tail-like structure, Nature, vol.1, issue.7388, pp.182-188, 2012.
DOI : 10.1038/nature10846

E. Ballister, A. Lai, R. Zuckermann, Y. Cheng, and J. Mougous, In vitro self-assembly of tailorable nanotubes from a simple protein building block, Proceedings of the National Academy of Sciences, vol.105, issue.10, pp.3733-3741, 2008.
DOI : 10.1073/pnas.0712247105

L. Pell, V. Kanelis, L. Donaldson, P. Howell, and A. Davidson, The phage ?? major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system, Proceedings of the National Academy of Sciences, vol.106, issue.11, pp.4160-4165, 2009.
DOI : 10.1073/pnas.0900044106

Y. Brunet, J. Hénin, C. H. Cascales, and E. , Type VI secretion and bacteriophage tail tubes share a common assembly pathway, EMBO reports, vol.15, issue.3, pp.315-336, 2014.
DOI : 10.1002/embr.201337936

URL : https://hal.archives-ouvertes.fr/hal-01458198

S. Kube, N. Kapitein, T. Zimniak, F. Herzog, and A. Mogk, Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism, Cell Reports, vol.8, issue.1, pp.20-30, 2014.
DOI : 10.1016/j.celrep.2014.05.034

M. Leroux, D. Leon, J. Kuwada, N. Russell, A. Pinto-santini et al., Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword, Proceedings of the National Academy of Sciences, vol.109, issue.48, pp.19804-19813, 2012.
DOI : 10.1073/pnas.1213963109

M. Basler, B. Ho, and J. Mekalanos, Tit-for-Tat: Type VI Secretion System Counterattack during Bacterial Cell-Cell Interactions, Cell, vol.152, issue.4, pp.884-94, 2013.
DOI : 10.1016/j.cell.2013.01.042

Y. Brunet, L. Espinosa, S. Harchouni, T. Mignot, and E. Cascales, Imaging Type VI Secretion-Mediated Bacterial Killing, Cell Reports, vol.3, issue.1, pp.36-41, 2013.
DOI : 10.1016/j.celrep.2012.11.027

URL : https://hal.archives-ouvertes.fr/hal-01458227

M. Aschtgen, M. Gavioli, A. Dessen, R. Lloubes, and E. Cascales, Type VI secretion system to the cell wall, Molecular Microbiology, vol.66, issue.4, pp.886-899, 2010.
DOI : 10.1111/j.1365-2958.2009.07028.x

M. Aschtgen, C. Bernard, S. De-bentzmann, R. Lloubes, and E. Cascales, SciN Is an Outer Membrane Lipoprotein Required for Type VI Secretion in Enteroaggregative Escherichia coli, Journal of Bacteriology, vol.190, issue.22, pp.7523-7531, 2008.
DOI : 10.1128/JB.00945-08

L. Ma, J. Lin, and E. Lai, An IcmF Family Protein, ImpLM, Is an Integral Inner Membrane Protein Interacting with ImpKL, and Its Walker A Motif Is Required for Type VI Secretion System-Mediated Hcp Secretion in Agrobacterium tumefaciens, Journal of Bacteriology, vol.191, issue.13, pp.4316-4345, 2009.
DOI : 10.1128/JB.00029-09

C. Felisberto-rodrigues, E. Durand, M. Aschtgen, S. Blangy, and M. Ortiz-lombardia, Towards a Structural Comprehension of Bacterial Type VI Secretion Systems: Characterization of the TssJ-TssM Complex of an Escherichia coli Pathovar, PLoS Pathogens, vol.15, issue.11, p.1002386, 2011.
DOI : 10.1371/journal.ppat.1002386.s010

URL : https://hal.archives-ouvertes.fr/hal-01458272

E. Gueguen and E. Cascales, Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial Competition, Applied and Environmental Microbiology, vol.79, issue.1, pp.32-40, 2013.
DOI : 10.1128/AEM.02504-12

URL : https://hal.archives-ouvertes.fr/hal-01458228

N. Petty, R. Bulgin, V. Crepin, A. Cerdeñ-o-tárraga, and G. Schroeder, The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli, Journal of Bacteriology, vol.192, issue.2, pp.525-563, 2010.
DOI : 10.1128/JB.01144-09

V. Sharma, A. Firth, I. Antonov, O. Fayet, and J. Atkins, A Pilot Study of Bacterial Genes with Disrupted ORFs Reveals a Surprising Profusion of Protein Sequence Recoding Mediated by Ribosomal Frameshifting and Transcriptional Realignment, Molecular Biology and Evolution, vol.28, issue.11, pp.3195-211, 2011.
DOI : 10.1093/molbev/msr155

URL : https://hal.archives-ouvertes.fr/hal-00667035

P. Baranov, A. Hammer, J. Zhou, R. Gesteland, and J. Atkins, Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression, Genome Biology, vol.6, issue.3, p.25, 2005.
DOI : 10.1186/gb-2005-6-3-r25

P. Baranov, O. Fayet, R. Hendrix, and J. Atkins, Recoding in bacteriophages and bacterial IS elements, Trends in Genetics, vol.22, issue.3, pp.174-81, 2006.
DOI : 10.1016/j.tig.2006.01.005

URL : https://hal.archives-ouvertes.fr/hal-00021150

L. Keegan, A. Gallo, O. Connell, and M. , The many roles of an RNA editor, Nature Reviews Genetics, vol.2, issue.11, pp.869-78, 2001.
DOI : 10.1038/35098584

B. Larsen, N. Wills, C. Nelson, J. Atkins, and R. Gesteland, Nonlinearity in genetic decoding: Homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting, Proceedings of the National Academy of Sciences, vol.97, issue.4, pp.1683-1691, 2000.
DOI : 10.1073/pnas.97.4.1683

H. Schurig, N. Beaucamp, R. Ostendorp, R. Jaenicke, and E. Adler, Phosphoglycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima form a covalent bifunctional enzyme complex, EMBO J, vol.14, pp.442-51, 1995.

M. Linton, M. Raabe, V. Pierotti, and S. Young, Reading-frame Restoration by Transcriptional Slippage at Long Stretches of Adenine Residues in Mammalian Cells, Journal of Biological Chemistry, vol.272, issue.22, pp.14127-14159, 1997.
DOI : 10.1074/jbc.272.22.14127

I. Tamas, J. Wernegreen, B. Nystedt, S. Kauppinen, and A. Darby, Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts, Proceedings of the National Academy of Sciences, vol.105, issue.39, pp.14934-14943, 2008.
DOI : 10.1073/pnas.0806554105

J. Wernegreen, S. Kauppinen, and P. Degnan, Slip into Something More Functional: Selection Maintains Ancient Frameshifts in Homopolymeric Sequences, Molecular Biology and Evolution, vol.27, issue.4, pp.833-842, 2010.
DOI : 10.1093/molbev/msp290

M. Levin, R. Hendrix, and S. Casjens, A Programmed Translational Frameshift is Required for the Synthesis of a Bacteriophage ?? Tail Assembly Protein, Journal of Molecular Biology, vol.234, issue.1, pp.124-163, 1993.
DOI : 10.1006/jmbi.1993.1568

J. Xu, R. Hendrix, and R. Duda, Conserved Translational Frameshift in dsDNA Bacteriophage Tail Assembly Genes, Molecular Cell, vol.16, issue.1, pp.11-21, 2004.
DOI : 10.1016/j.molcel.2004.09.006

B. Larsen, R. Gesteland, and J. Atkins, Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%, Journal of Molecular Biology, vol.271, issue.1, pp.47-60, 1997.
DOI : 10.1006/jmbi.1997.1162

C. Penno, P. Sansonetti, and C. Parsot, Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri, Molecular Microbiology, vol.18, issue.1, pp.204-218, 2005.
DOI : 10.1111/j.1365-2958.2004.04530.x

C. Penno, A. Hachani, L. Biskri, P. Sansonetti, and A. Allaoui, Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri, Molecular Microbiology, vol.60, issue.5, pp.1460-1468, 2006.
DOI : 10.1093/nar/gki954

A. Parks, C. Court, L. Lubkowska, D. Jin, and M. Kashlev, Bacteriophage ?? N protein inhibits transcription slippage by Escherichia coli RNA polymerase, Nucleic Acids Research, vol.42, issue.9, pp.5823-5832, 2014.
DOI : 10.1093/nar/gku203

J. Xu, R. Hendrix, and R. Duda, A Balanced Ratio of Proteins from Gene G and Frameshift-Extended Gene GT Is Required for Phage Lambda Tail Assembly, Journal of Molecular Biology, vol.425, issue.18, pp.3476-87, 2013.
DOI : 10.1016/j.jmb.2013.07.002

M. Eppinger, M. Rosovitz, W. Fricke, D. Rasko, and G. Kokorina, The Complete Genome Sequence of Yersinia pseudotuberculosis IP31758, the Causative Agent of Far East Scarlet-Like Fever, PLoS Genetics, vol.5, issue.8, p.142, 2007.
DOI : 10.1371/journal.pgen.0030142.st007

L. Ferrières, G. Hémery, T. Nham, A. Guérout, and D. Mazel, Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery, Journal of Bacteriology, vol.192, issue.24, pp.6418-6445, 2010.
DOI : 10.1128/JB.00621-10

E. Gueguen, E. Durand, X. Zhang, Q. Amalric, and L. Journet, Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator, PLoS ONE, vol.11, issue.6, p.66615, 2013.
DOI : 10.1371/journal.pone.0066615.s002

URL : https://hal.archives-ouvertes.fr/hal-01458226

F. Van-den-ent and J. Lowe, RF cloning: A restriction-free method for inserting target genes into plasmids, Journal of Biochemical and Biophysical Methods, vol.67, issue.1, pp.67-74, 2006.
DOI : 10.1016/j.jbbm.2005.12.008

A. Zaslaver, A. Bren, M. Ronen, S. Itzkovitz, and I. Kikoin, A comprehensive library of fluorescent transcriptional reporters for Escherichia coli, Nature Methods, vol.297, issue.8, pp.623-631, 2006.
DOI : 10.1038/nmeth895