E. Allen, Z. X. Xie, A. M. Gustafson, and J. C. Carrington, microRNAdirected phasing during trans-acting siRNA biogenesis in plants, Cell, vol.121, 2005.

M. Balsera, E. Uberegui, P. Schuermann, and B. B. Buchanan, Evolutionary Development of Redox Regulation in Chloroplasts, Antioxidants & Redox Signaling, vol.21, issue.9, pp.1327-1355, 2014.
DOI : 10.1089/ars.2013.5817

J. A. Bick and T. Leustek, Plant sulfur metabolism ??? the reduction of sulfate to sulfite, Current Opinion in Plant Biology, vol.1, issue.3, pp.240-244, 1998.
DOI : 10.1016/S1369-5266(98)80111-8

R. Bicknell, P. M. Cullis, R. L. Jarvest, and G. Lowe, The stereochemical course of nucleotidyl transfer catalyzed by ATP sulfurylase, J. Biol. Chem, vol.257, pp.8922-8927, 1982.

M. E. Bradley, J. S. Rest, W. Li, and N. B. Schwartz, Sulfate Activation Enzymes: Phylogeny and Association with Pyrophosphatase, Journal of Molecular Evolution, vol.13, issue.Pt 2, pp.1-13, 2009.
DOI : 10.1007/s00239-008-9181-6

M. A. Bromke, R. Hoefgen, and H. Hesse, Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana, Amino Acids, vol.267, issue.12, pp.1253-1265, 2013.
DOI : 10.1007/s00726-013-1462-8

C. Brunold, Regulatory interactions between sulfate and nitrate assimilation, Sulfur Nutrition and Sulfur Assimilation in Higher Plants, 2000.

C. Brunold and J. A. Schiff, Studies of Sulfate Utilization of Algae: 15. Enzymes of Assimilatory Sulfate Reduction in Euglena and Their Cellular Localization, PLANT PHYSIOLOGY, vol.57, issue.3, pp.430-436, 1976.
DOI : 10.1104/pp.57.3.430

C. Brunold and M. Suter, Regulation of Sulfate Assimilation by Nitrogen Nutrition in the Duckweed Lemna minor L., PLANT PHYSIOLOGY, vol.76, issue.3, pp.579-583, 1984.
DOI : 10.1104/pp.76.3.579

B. B. Buchanan and Y. Balmer, REDOX REGULATION: A Broadening Horizon, Annual Review of Plant Biology, vol.56, issue.1, 2005.
DOI : 10.1146/annurev.arplant.56.032604.144246

D. E. Canfield, The evolution of the Earth surface sulfur reservoir, American Journal of Science, vol.304, issue.10, pp.839-861, 2004.
DOI : 10.2475/ajs.304.10.839

J. Couturier, K. Chibani, J. Jacquot, and N. Rouhier, Cysteinebased redox regulation and signaling in plants, Front. Plant Sci, 2013.

M. Cumming, S. Leung, J. Mccallum, and M. T. Mcmanus, (L.), FEBS Letters, vol.70, issue.22, pp.4139-4147, 2007.
DOI : 10.1016/j.febslet.2007.07.062

D. P. Dixon, M. Skipsey, N. M. Grundy, and R. Edwards, Stress-Induced Protein S-Glutathionylation in Arabidopsis, PLANT PHYSIOLOGY, vol.138, issue.4, pp.2233-2244, 2005.
DOI : 10.1104/pp.104.058917

J. R. Farley, D. F. Cryns, Y. H. Yang, and I. H. Segel, Adenosine triphosphate sulfurylase from Penicillium chrysogenum Steady state kinetics of the forward and reverse reactions, J. Biol. Chem, vol.251, pp.4389-4397, 1976.

J. R. Farley, G. Nakayama, D. Cryns, and I. H. Segel, Adenosine triphosphate sulfurylase from Penicillium chrysogenum: Equilibrium binding, substrate hydrolysis, and isotope exchange studies, Archives of Biochemistry and Biophysics, vol.185, issue.2, pp.376-390, 1978.
DOI : 10.1016/0003-9861(78)90180-7

P. Flombaum, J. L. Gallegos, R. A. Gordillo, J. Rincon, L. L. Zabala et al., Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus, Proceedings of the National Academy of Sciences, vol.110, issue.24, pp.9824-9829, 2013.
DOI : 10.1073/pnas.1307701110

M. Giordano, Homeostasis: An underestimated focal point of ecology and evolution, Plant Science, vol.211, pp.92-101, 2013.
DOI : 10.1016/j.plantsci.2013.07.008

M. Giordano and L. Prioretti, Sulphur and Algae: Metabolism, Ecology and Evolution, The physiology of Microalgae, 2014.
DOI : 10.1007/978-3-319-24945-2_9

M. Giordano, R. , and J. A. , Nitrogen and sulfur assimilation in plants and algae, Aquatic Botany, vol.118, pp.45-61, 2014.
DOI : 10.1016/j.aquabot.2014.06.012

K. Glaeser, B. Kanawati, T. Kubo, P. Schmitt-kopplin, and E. Grill, Exploring the Arabidopsis sulfur metabolome, The Plant Journal, vol.30, issue.1, pp.31-45, 2014.
DOI : 10.1111/tpj.12359

S. Harjes, P. Bayer, and A. J. Scheidig, The Crystal Structure of Human PAPS Synthetase 1 Reveals Asymmetry in Substrate Binding, Journal of Molecular Biology, vol.347, issue.3, 2005.
DOI : 10.1016/j.jmb.2005.01.005

Y. Hatzfeld, S. Lee, M. Lee, T. Leustek, and K. Saito, Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana, Gene, vol.248, issue.1-2, pp.51-58, 2000.
DOI : 10.1016/S0378-1119(00)00132-3

J. Herrmann, G. E. Ravilious, S. E. Mckinney, C. S. Westfall, S. G. Lee et al., Structure and Mechanism of Soybean ATP Sulfurylase and the Committed Step in Plant Sulfur Assimilation, Journal of Biological Chemistry, vol.289, issue.15, pp.10919-10929, 2014.
DOI : 10.1074/jbc.M113.540401

M. Holmer and P. Storkholm, Sulphate reduction and sulphur cycling in lake sediments: a review, Freshwater Biology, vol.5, issue.4, pp.431-451, 2001.
DOI : 10.1016/0168-6496(96)00006-2

I. E. Sonderby, F. F. Geu, and B. A. Halkier, Biosynthesis of glucosinolates ??? gene discovery and beyond, Trends in Plant Science, vol.15, issue.5, 2010.
DOI : 10.1016/j.tplants.2010.02.005

G. Jagadeeswaran, Y. Li, and R. Sunkar, Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis, The Plant Journal, vol.6, issue.1, pp.85-96, 2014.
DOI : 10.1111/tpj.12364

M. W. Jones-rhoades and D. P. Bartel, Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA, Molecular Cell, vol.14, issue.6, 2004.
DOI : 10.1016/j.molcel.2004.05.027

C. G. Kawashima, C. A. Matthewman, S. Huang, B. Lee, N. Yoshimoto et al., Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis, The Plant Journal, vol.282, issue.5, pp.863-876, 2011.
DOI : 10.1111/j.1365-313X.2011.04547.x

S. Kopriva, S. G. Mugford, C. Matthewman, and A. Koprivova, Plant sulfate assimilation genes: redundancy versus specialization, Plant Cell Reports, vol.134, issue.4, pp.1769-1780, 2009.
DOI : 10.1007/s00299-009-0793-0

A. Koprivova, M. Giovannetti, P. Baraniecka, B. Lee, C. Grondin et al., Natural Variation in the ATPS1 Isoform of ATP Sulfurylase Contributes to the Control of Sulfate Levels in Arabidopsis, PLANT PHYSIOLOGY, vol.163, issue.3, pp.1133-1141, 2013.
DOI : 10.1104/pp.113.225748

URL : https://hal.archives-ouvertes.fr/hal-01203997

D. J. Lalor, T. Schnyder, V. Saridakis, D. E. Pilloff, A. Dong et al., Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase: C-terminal domain essential for oligomer formation but not for activity, Protein Engineering Design and Selection, vol.16, issue.12, pp.1071-1079, 1996.
DOI : 10.1093/protein/gzg133

A. G. Lappartient and B. Touraine, Glutathione-Mediated Regulation of ATP Sulfurylase Activity, SO42- Uptake, and Oxidative Stress Response in Intact Canola Roots, Plant Physiology, vol.114, issue.1, pp.177-183, 1997.
DOI : 10.1104/pp.114.1.177

A. G. Lappartient, J. J. Vidmar, T. Leustek, A. D. Glass, and B. Touraine, Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound, The Plant Journal, vol.62, issue.1, pp.89-95, 1999.
DOI : 10.1104/pp.114.1.137

G. A. Leao, J. A. Oliveira, F. S. Farnese, G. S. Gusman, F. et al., Sulfur metabolism: Different tolerances of two aquatic macrophytes exposed to arsenic, Ecotoxicology and Environmental Safety, vol.105, pp.36-42, 2014.
DOI : 10.1016/j.ecoenv.2014.03.011

S. Lee and T. Leustek, APS Kinase fromArabidopsis thaliana:Genomic Organization, Expression, and Kinetic Analysis of the Recombinant Enzyme, Biochemical and Biophysical Research Communications, vol.247, issue.1, pp.171-175, 1998.
DOI : 10.1006/bbrc.1998.8751

S. M. Lee and T. Leustek, The affect of cadmium on sulfate assimilation enzymes in Brassica juncea, Plant Science, vol.141, issue.2, pp.201-207, 1999.
DOI : 10.1016/S0168-9452(98)00231-3

T. Leustek, M. Murillo, and M. Cervantes, Cloning of a cDNA Encoding ATP Sulfurylase from Arabidopsis thaliana by Functional Expression in Saccharomyces cerevisiae, Plant Physiology, vol.105, issue.3, pp.897-902, 1994.
DOI : 10.1104/pp.105.3.897

T. Leustek and K. Saito, Sulfate Transport and Assimilation in Plants, Plant Physiology, vol.120, issue.3, pp.637-643, 1999.
DOI : 10.1104/pp.120.3.637

T. S. Leyh, The Physical Biochemistry and Molecular Genetics of Sulfate Activation, Critical Reviews in Biochemistry and Molecular Biology, vol.4, issue.6, pp.515-542, 1993.
DOI : 10.1080/00327487108081932

T. S. Leyh, J. C. Taylor, and G. D. Markham, The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization, J. Biol. Chem, vol.263, pp.2409-2416, 1988.

C. H. Lillig, S. Schiffmann, C. Berndt, A. Berken, R. Tischka et al., Molecular and Catalytic Properties of Arabidopsis thaliana Adenylyl Sulfate (APS)-Kinase, Archives of Biochemistry and Biophysics, vol.392, issue.2, pp.303-310, 2001.
DOI : 10.1006/abbi.2001.2453

M. Lindahl, F. , and F. J. , Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different, Proc. Natl, 2003.
DOI : 10.1073/pnas.2534397100

C. X. Liu, Y. Suo, and T. S. Leyh, The Energetic Linkage of GTP Hydrolysis and the Synthesis of Activated Sulfate, Biochemistry, vol.33, issue.23, pp.7309-7314, 1994.
DOI : 10.1021/bi00189a036

T. Liu, J. A. Chen, W. Wang, M. Simon, F. Wu et al., A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain, PLoS ONE, vol.29, issue.3, 2014.
DOI : 10.1371/journal.pone.0090120.s003

I. J. Macrae, I. H. Segel, and A. J. Fisher, Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum, Nature Structural Biology, vol.9, issue.12, pp.945-949, 1038.
DOI : 10.1038/nsb868

C. Marchand, L. Marechal, P. Meyer, Y. Decottignies, and P. , Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin, PROTEOMICS, vol.138, issue.1, pp.6528-6537, 2006.
DOI : 10.1002/pmic.200600443

URL : https://hal.archives-ouvertes.fr/hal-00164223

A. Maruyama-nakashita, Y. Nakamura, T. Tohge, K. Saito, and H. Takahashi, Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism, THE PLANT CELL ONLINE, vol.18, issue.11, pp.3235-3251, 2006.
DOI : 10.1105/tpc.106.046458

F. Montechiaro and M. Giordano, Compositional homeostasis of the dinoflagellate Protoceratium reticulatum grown at three different pCO 2, J. Plant Physiol, vol.167, 2010.

J. D. Mougous, D. H. Lee, S. C. Hubbard, M. W. Schelle, D. J. Vocadlo et al., Molecular Basis for G Protein Control of the Prokaryotic ATP Sulfurylase, Molecular Cell, vol.21, issue.1, pp.109-122, 2006.
DOI : 10.1016/j.molcel.2005.10.034

J. W. Mueller and N. Shafqat, Adenosine-5???-phosphosulfate - a multifaceted modulator of bifunctional 3???-phospho-adenosine-5???-phosphosulfate synthases and related enzymes, FEBS Journal, vol.68, issue.13, pp.3050-3057, 2013.
DOI : 10.1111/febs.12252

M. Murillo and T. Leustek, Adenosine-5???-Triphosphate-Sulfurylase fromArabidopsis thalianaandEscherichia coliAre Functionally Equivalent but Structurally and Kinetically Divergent: Nucleotide Sequence of Two Adenosine-5???-Triphosphate-Sulfurylase cDNAs fromArabidopsis thalianaand Analysis of a Recombinant Enzyme, Archives of Biochemistry and Biophysics, vol.323, issue.1, pp.195-2040026, 1995.
DOI : 10.1006/abbi.1995.0026

K. Parey, U. Demmer, E. Warkentin, A. Wynen, U. Ermler et al., Structural, Biochemical and Genetic Characterization of Dissimilatory ATP Sulfurylase from Allochromatium vinosum, PLoS ONE, vol.15, issue.9, 2013.
DOI : 10.1371/journal.pone.0074707.s003

N. J. Patron, D. G. Durnford, and S. Kopriva, Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers, BMC Evolutionary Biology, vol.8, issue.1, pp.39-49, 2008.
DOI : 10.1186/1471-2148-8-39

A. Soybean, homodimeric enzyme involved in sulfur assimilation , is abundantly expressed in roots and induced by cold treatment, Arch. Biochem. Biophys, vol.450, pp.20-29

S. Ratti, A. H. Knoll, and M. Giordano, Did sulfate availability facilitate the evolutionary expansion of chlorophyll a plus c phytoplankton in the oceans?, Geobiology, vol.9, 2011.

H. M. Rauen, G. E. Ravilious, J. Herrmann, S. G. Lee, C. S. Westfall et al., Biochemisches Taschenbuch. Berlin Kinetic mechanism of the dimeric ATP sulfurylase from plants, Biosci. Rep, vol.33, pp.585-591, 1042.

S. Rosenwasser, S. G. Van-creveld, D. Schatz, S. Malitsky, O. Tzfadia et al., Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment, Proc. Natl. Acad, 2014.
DOI : 10.1073/pnas.1319773111

C. Rotte and T. Leustek, Differential Subcellular Localization and Expression of ATP Sulfurylase and 5???-Adenylylsulfate Reductase during Ontogenesis of Arabidopsis Leaves Indicates That Cytosolic and Plastid Forms of ATP Sulfurylase May Have Specialized Functions, Plant Physiology, vol.124, issue.2, pp.715-724, 2000.
DOI : 10.1104/pp.124.2.715

J. A. Schiff and R. C. Hodson, The Metabolism of Sulfate, Annual Review of Plant Physiology, vol.24, issue.1, pp.381-414, 1973.
DOI : 10.1146/annurev.pp.24.060173.002121

J. Schwedock and S. R. Long, ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti, Nature, vol.348, issue.6302, pp.644-647, 1990.
DOI : 10.1038/348644a0

I. H. Segel, Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 1976.

P. A. Seubert, L. Hoang, F. Renosto, and I. H. Segel, ATP sulfurylase from Penicillium chrysogenum: measurements of the true specific activity of an enzyme subject to potent product inhibition and a reassessment of the kinetic mechanism, Arch. Biochem. Biophys, vol.22583, pp.679-691, 1983.

W. H. Shaw, A. , and J. W. , The enzymology of adenosine triphosphate sulphurylase from spinach leaf tissue. Kinetic studies and a proposed reaction mechanism, Biochemical Journal, vol.139, issue.1, pp.27-35, 1974.
DOI : 10.1042/bj1390027

L. Shu and Z. Hu, Characterization and differential expression of microRNAs elicited by sulfur deprivation in Chlamydomonas reinhardtii, BMC Genomics, vol.13, issue.1, pp.1471-2164, 2012.
DOI : 10.1021/bi011884h

P. Song, L. Li, and J. Liu, Proteomic Analysis in Nitrogen-Deprived Isochrysis galbana during Lipid Accumulation, PLoS ONE, vol.43, issue.12, 2013.
DOI : 10.1371/journal.pone.0082188.s002

H. Suga, Z. Chen, A. De-mendoza, A. Sebe-pedros, M. W. Brown et al., The Capsaspora genome reveals a complex unicellular prehistory of animals Channeling in sulfate activating complexes, Nat. Commun. Biochemistry, vol.45, pp.11304-11311, 1021.

H. Takahashi, S. Kopriva, M. Giordano, K. Saito, and R. Hell, Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes, Annual Review of Plant Biology, vol.62, issue.1, pp.157-184, 2011.
DOI : 10.1146/annurev-arplant-042110-103921

T. C. Ullrich, M. Blaesse, and R. Huber, Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation, The EMBO Journal, vol.20, issue.3, pp.316-329, 2001.
DOI : 10.1093/emboj/20.3.316

P. Vauclare, S. Kopriva, D. Fell, M. Suter, L. Sticher et al., : adenosine 5???-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols, The Plant Journal, vol.39, issue.6, pp.729-740, 2002.
DOI : 10.1046/j.1365-313X.2002.01391.x

M. Wang, Q. Wang, and B. Zhang, Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.), Gene, vol.530, issue.1, 2013.
DOI : 10.1016/j.gene.2013.08.009

F. H. Yildiz, J. P. Davies, and A. R. Grossman, Sulfur Availability and the SAC1 Gene Control Adenosine Triphosphate Sulfurylase Gene Expression in Chlamydomonas reinhardtii, Plant Physiology, vol.112, issue.2, pp.669-675, 1996.
DOI : 10.1104/pp.112.2.669

Z. Yu, E. B. Lansdon, I. H. Segel, and A. J. Fisher, Crystal Structure of the Bifunctional ATP Sulfurylase ??? APS kinase from the Chemolithotrophic Thermophile Aquifex aeolicus, Journal of Molecular Biology, vol.365, issue.3, pp.732-743, 2007.
DOI : 10.1016/j.jmb.2006.10.035

Z. Zhang, J. Shrager, M. Jain, C. W. Chang, O. Vallon et al., Insights into the Survival of Chlamydomonas reinhardtii during Sulfur Starvation Based on Microarray Analysis of Gene Expression, Eukaryotic Cell, vol.3, issue.5, pp.1331-1348, 2004.
DOI : 10.1128/EC.3.5.1331-1348.2004

O. Zhaxybayeva, J. P. Gogarten, R. L. Charlebois, W. F. Doolittle, and R. T. Papke, Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events, Genome Research, vol.16, issue.9, pp.1099-1108, 2006.
DOI : 10.1101/gr.5322306