The numerical problem of using Bézier curves and surfaces in the power basis

Abstract : The computations of curves and surfaces points for CAD modeling are numerous and important. In the case of modeling using the Be´zier method, these may be achieved either with the De Casteljau algorithm in the Bernstein basis, or with the Horner algorithm in the power basis. The De Casteljau algorithm requires a greater number of operations than Horner's. However, we show that the equations of curves and surfaces in the power basis may be affected by a very important loss of significant digits on the polynomials coefficient; this is due to the required conversion matrices which are ill-conditioned. Examples are given. We conclude that the use of the Horner algorithm should be avoided for the computations of curves and surfaces points with the Be´zier method.
Type de document :
Article dans une revue
Computer Aided Geometric Design, Elsevier, 1989, 6 (2), pp.121-128. 〈10.1016/0167-8396(89)90015-0〉
Liste complète des métadonnées

https://hal-amu.archives-ouvertes.fr/hal-01281358
Contributeur : Marc Daniel <>
Soumis le : mercredi 2 mars 2016 - 08:44:43
Dernière modification le : jeudi 15 mars 2018 - 16:56:06

Lien texte intégral

Identifiants

Collections

Citation

Marc Daniel, Jean-Claude Daubisse. The numerical problem of using Bézier curves and surfaces in the power basis. Computer Aided Geometric Design, Elsevier, 1989, 6 (2), pp.121-128. 〈10.1016/0167-8396(89)90015-0〉. 〈hal-01281358〉

Partager

Métriques

Consultations de la notice

98