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Abstract

Prevalence of healthcare associated infections remains high in patients in intensive care units (ICU), estimated at
23.4% in 2011. It is important to reduce the overall risk while minimizing the cost and disruption to service provision
by targeted infection control interventions. The aim of this study was to develop a monitoring tool to analyze the
spatial variability of bacteriological contamination within the healthcare environment to assist in the planning of
interventions. Within three cross-sectional surveys, in two ICU wards, air and surface samples from different heights
and locations were analyzed. Surface sampling was carried out with tryptic Soy Agar contact plates and Total Viable
Counts (TVC) were calculated at 48hrs (incubation at 37°C). TVCs were analyzed using Poisson Generalized
Additive Mixed Model for surface type analysis, and for spatial analysis. Through three cross-sectional survey, 370
samples were collected. Contamination varied from place-to-place, height-to-height, and by surface type. Hard-to-
reach surfaces, such as bed wheels and floor area under beds, were generally more contaminated, but the height
level at which maximal TVCs were found changed between cross-sectional surveys. Bedside locations and bed
occupation were risk factors for contamination. Air sampling identified clusters of contamination around the nursing
station and surface sampling identified contamination clusters at numerous bed locations. By investigating dynamic
hospital wards, the methodology employed in this study will be useful to monitor contamination variability within the
healthcare environment and should help to assist in the planning of interventions.
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Introduction

Notable progress has been made in the last 15 years in
developing and implementing systems to reduce the risk of
healthcare associated infections (HCAI) but with only a
moderate reduction on the overall prevalence of HCAI in
England from 8.2% (2006) to 6.4% in 2011 [1]. In the same
period, HCAI has increased in patients in intensive care units
(ICU) (23.4% in 2011). Some infections, such as
Staphylococcus sp. and Enterobacteriaceae remain
problematic within England representing 21.3% of the reported

HCAI and 32.4% respectively [1]. Similar rates are seen
worldwide e.g. Brazil (12.6% [2]), or Estonia (26% [2]) clearly
demonstrating that HCAI rates are a continuing concern
internationally [3,4,5].

The reasons why HCAI remain high in the face of universal
infection control precautions may be because of the demanding
environments required for patients with severe and complex
pathologies, such as in ICUs and in facilities caring for high
densities of immunocompromised patients. It is becoming
increasingly apparent that the environment itself can be an
important intermediary reservoir for potentially pathogenic
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microbes [6]. Surfaces, ward design, hand washing, staff
behaviours, and ward management all contribute to pathogen
behaviour [7] and the risk of HCAI [8]. How best to monitor and
manage these environments is, however, still controversial
[9,10].

If the spatial variability of microbiological contamination can
be effectively evaluated, it could facilitate targeted infection
control interventions to reduce the role of the environment as
an intermediary source of cross transmission. The objective of
this study was to develop a methodological approach to assess
the spatial and temporal variability of bacteriologic
contamination, both distant to and at bedsides in an ICU
setting. By investigating a dynamic hospital ward, such an
approach aimed to identify area of high levels of consistent
contamination.

Methods

Data Collection
The screening procedure included 24 different sampling

locations (five samples at each location), 8 in a four bedded
medical intensive care unit (MITU) and 16 in a nine bedded
surgical intensive care unit (SITU) (Figure 1) at the University
College London Hospital (UCLH). Ward sampling was carried
out with Tryptic Soy Agar (TSA) contact plates (5.5cm diameter
i.e. 24cm2) in order to provide a quantitative measure on a non-
selective growth medium, which would enable growth of skin
and environmental flora [11,12,13]. Surfaces were sampled at
these different locations in each bed space and distant to bed
(door pressure panels or handles, nursing station etc).
Samples were always taken from the same site on all locations
(e.g. the centre panels of doors, the centre of the floor space,
the centre of bed rails, centre of the bottom left bed wheel,
above the bed head). Sites varied slightly depending on what
furniture occupied the bed space at the time. Surface sampling
included surfaces at different heights, low (<0.6 m), medium
(0.6 to 1.2 m, including high touch surfaces) and high (>1.2 m).
Air samples were taken from MITU and SITU in each bed
space at the back right hand corner, around the nurse’s station
and at access points onto the units. Air sampling was
performed using a Sampl’air lite (Aes Chemunex), sampling
1m3 of air onto a blood agar plate [14]. Air sampling occurred at
similar times to the surface sampling, separated in time by at
least 1 hour to minimize user contamination. All plates were
read and colony forming units (CFU) were counted per plate
(5.5cm diameter, i.e. 24cm2) giving Total Viable Counts (TVC)
that was recorded at 48hrs after incubation at 37°C [11].

In order to evaluate changes through time, the screening
procedure (surface and air sampling) was replicated through
three cross-sectional surveys at different times over a period of
three months. The interval between each cross-sectional
survey was of 1 month: it allowed comparison between the
short stay SITU and the longer stay MITU as patient length of
stay in SITU was less than a month whereas patient length of
stay in MITU was over a month.

As many factors are involved in spatial distribution of
bacterial contamination, the screening procedure also took into
account some of these factors. Firstly, we recorded whether

the bed was occupied or unoccupied and if the bedridden
patient had been ascribed an infection control alert. Secondly,
in each sampling location, surface types were selected for a
different surface type and material at each location. Surface
types included bed rails, floor, alcohol hand gel pump, bedside
table, bed wheels, chair, clinical waste bin, storage trolley and
unit top and shelf, top of computer, and surface material
(porous and non-porous) are described in Table S1. Thirdly,
samples were taken at the same time at each cross-sectional
survey, without alteration to ventilation or cleaning regime, in
order to ensure data comparability. Cleaning procedure was
undertaken adhering to Department of Health Guidelines [15]:
at UCLH, routine cleaning was undertaken using water and
microfibre with no detergent, twice a day (8 am and 3 pm).
Samples were taken three hours after routine morning cleaning
in an attempt to standardize procedures. In addition, ITU
cleaning does take place throughout the day as nurses actively
wipe down surfaces with alcohol within bed spaces. The area
studied had windows that did not open and air conditioning.

Statistical analysis
Common specifications.  In order to compare the different

risk factors (type of surfaces, furniture, bedside, bed
occupancy, height level and locations) involved in HCAI, TVC
was analyzed using Generalized Additive Mixed Model
(GAMM) [16,17]. This regressive approach was allowed to
model the counts of micro-organisms growing on TSA plates,
with a Poisson distribution model (using the log canonical link),
adjusted on risk factors. The model selection was based on
analysis of covariance for nested models and the Un-Biased
Risk Estimator (UBRE) score. Diagnostic plots were examined
to assess the quality of the model fit, according to Augustin et
al. [18]. For each factor, incidence ratios (IRs) were calculated
as the exponential of retrieved parameter estimates, comparing
each class to the reference class. With an incidence ratio
significantly higher than 1, a surface type was considered to be
at risk of being more contaminated than the reference class,
with a higher TVC, whatever the TVC of the reference class. A
contrario, with an incidence ratio significantly lower than 1, a
surface type was considered to have a lower TVC than the
reference class. The statistical analysis was performed using
the software R 2.10.1 (The R Foundation for statistical
computing, Vienna, Austria), and the mgcv 1.7-22 package
developed by Simon Wood [19]. Maps were performed using
the geographic information system ArcGIS (Environmental
Systems Research Institute, Redlands, California). All p-values
were compared to the classical α-threshold of 0.05.

GAMM for surface types.  Associations between bacterial
counts and surface types were assessed using a GAMM model
including the following risk factors: 'Surface types' and 'Ward'
(MITU or SITU). The 'Surface types' variable had eleven
classes, which were bed rails (reference class), floor, alcohol
hand gel pump, bedside table, bed wheels, chair, clinical waste
bin, storage trolley and unit top and shelf, top of computer. For
the variable 'Ward', the reference class was MITU. The location
according to beds and bed occupancy (non-bedside,
unoccupied bedside, occupied bedside) and the cross-
sectional survey date were modelled as random effect. In
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addition, a comparison of TVC between porous and non-
porous materials and between different materials was provided
by using Kruskall-Wallis ranking test.

Spatial GAMM.  Spatial analysis was performed to assess
the spatial variability of micro-organisms in the air and on
surfaces using GAMM. Because numerous surface samples
were taken at each location, mean TVCs were used. The risk
factors, included in the regression model were: 'Bedside'
including occupancy of beds (non bedside, unoccupied
bedside, occupied bedside), 'Ward' (MITU and SITU), 'Height
level' (<0.6m, [0.6m-1.2m], >1.2m) and locations. The
reference classes were respectively non bedside, MITU, height
level <0.6m. The locations of each sample were referenced
using Cartesian coordinates, which where modelled using thin

plate splines [20]. The selected models were also used for
mapping the TVCs from the surface environment and from the
air environment, using gridded coordinates. Bedside was
specified according to the distance to a bed, and the
occupancy was specified according to the current occupancy
for each cross-sectional survey.

Results

TVCs were obtained for a total of 370 samples, i.e. between
120 and 130 samples for each cross-sectional survey. During
the first and second cross-sectional surveys, all of the bed
spaces on MITU (100%) and 5 of the 9 beds on SITU (55,6%)
were occupied. During the third cross-sectional survey, 3 of the

Figure 1.  Map of the studied units.  The red crosses represent the sampling locations. MITU: medical intensive care unit; SITU:
surgical intensive care unit; b: bed; w: clinical waste bin; n: nurse’s station.
doi: 10.1371/journal.pone.0076249.g001
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4 beds on MITU (75%) and 6 of the 9 beds on SITU (66.7%)
were occupied. Organisms were identified to genus level, and
the predominant genus identified was Staphylococcus.

Crude counts are presented in Table 1 and Incidence Ratios
in Tables 2, 3, 4. The lower height level (<0.6m) was
consistently the most contaminated within the SITU (median
TVCs between the first, second and third cross-sectional
surveys were 182, 107 and 350 per 24cm2 respectively). In
contrast the pattern of contamination in MITU was more
variable between cross-sectional surveys. For example the
lower height level (<0.6m) was most contaminated for the
second cross-sectional survey (median TVC 350 per 24cm2),
but with the highest level (>1.2m) most contaminated for the
first and third cross-sectional surveys (median TVCs 200 and
350 per 24cm2 respectively). Mid-level surfaces sampled
(between 0.6 and 1.2m) did however demonstrate consistently
lower levels of contamination during all the three cross-
sectional surveys (median TVCs 34.4, 28.7, 55.4 per 24cm2

respectively).
To enable the impact of location and bed occupancy on

contamination to be assessed, TVCs were analysed in a
statistical model as described in the methods. As Tables 2-4
demonstrate, there was a highly significant variation in
contamination throughout the units analysed. When TVCs were
adjusted for ward (SITU or MITU), bed occupancy and sample

Table 1. Total viable counts (TVC) per 24cm2 plates (5.5cm
diameter).

Care unit Height level
First cross-
sectional survey

Second cross-
sectional survey

Third cross-
sectional
survey

SITU Level 0 182 (n=15) 107 (n=16) 350 (n=16)

  (40-350) (17-350) (18-350)

 Level 1 71.2 (n=33) 34.8 (n=36) 64.5 (n=36)

  (2-269) (1.5-350) (3-350)

 Level 2 79.2 (n=13) 29.5 (n=15) 14.5 (n=15)

  (5-350) (2.5-197) (1-350)

 Air 98.5 (n=12) 60 (n=11) 164 (n=11)

  (60-167) (27-158) (39-419)

MITU Level 0 150.3 (n=7) 350 (n=9) 205 (n=9)

  (6-623) (2-350) (4-350)

 Level 1 34.4 (n=24) 28.7 (n=25) 55.4 (n=25)

  (12.3-238.3) (2-126) (9.7-350)

 Level 2 200 (n=5) 27 (n=5) 350 (n=5)

  (27-350) (6-350) (22-350)

 Air 103 (n=7) 88 (n=7) 182 (n=7)

  (99-217) (50-167) (51-213)

Median, sample size (n) and (min, max), are presented for each cross-sectional
survey, at each height level and care unit.
Level 0: <0.6m; Level 1: [0.6m-1.2m]; Level 2: >1.2m
SITU: surgical intense care unit MITU: medical intensive care unit
doi: 10.1371/journal.pone.0076249.t001

location, mid and high-level surface samples were significantly
less contaminated than samples taken from locations under 0.6
m (Incidence Ratios -IR- respectively at 0.39, 95% Confidence
interval [0.37; 0.42], and 0.59 [0.56; 0.64] (first cross-sectional
survey), 0.39 [0.37; 0.42] and 0.31 [0.29; 0.33] (second cross-
sectional survey) and 0.47 [0.44; 0.49] and 0.6 [0.57; 0.64]
(third cross-sectional survey)).

Table 2. Spatial analysis of Air samples.

Cross-sectional
surveys Cofactors  IR [CI95%] p-value
(% explained
deviance -n§)

    

First cross-
sectional survey

    

(81.5% - n=19) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

0.74[0.58;0.93] 0.007**

  
Occupied
Bedside

1.11[0.91;1.35] 0.26

 Ward MITU* 1 -
  SITU 0.33[0.2;0.57] <0.001**

 
Spatial
location***  - <0.001**

Second cross-
sectional survey

    

(85.7% - n=19) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

0.71 [0.52;0.97] 0.02**

  
Occupied
Bedside

0.6[0.47;0.76] <0.001**

 Ward MITU* 1 -
  SITU 14.34 [8.08;25.44] <0.001**

 
Spatial
location***  - <0.001**

Third cross-
sectional survey

    

(49.6% - n=19) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

1.92 [1.54;2.39] <0.001**

  
Occupied
Bedside

1.96 [1.66; 2.31] <0.001**

 Ward MITU* 1 -
  SITU 0.07 [0.04;0.11] <0.001**

 
Spatial
location***  - <0.001**

Risk factors were assessed each day by using Generalized Additive Mixed Model,
adjusted on Bedside (occupied or not), Ward and location.
§. n: number of locations
*. reference class
**. p<0.05
***. spatial location was modelled by thin plate splines not providing unique IR.
IR: incidence ratio SITU: surgical intensive care unit MITU: medical intensive care
unit
doi: 10.1371/journal.pone.0076249.t002
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Levels of contamination on the surface types studied are
displayed in Table 4. Contamination is presented as adjusted

Table 3. Spatial analysis of Surface samples.

Cross-sectional
surveys Cofactors  IR [CI95%] p-value
(% explained
deviance -n§)

    

First Cross-
sectional survey

    

(38% - n=49) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

0.78 [0.67;0.89] 0.0002**

  Occupied Bedside 1.72 [1.54;1.91] <0.001**

 Ward MITU* 1 -
  SITU 0.77[0.59;1] 0.05**

 Height Level 0 <0.6m 1 -
  Level 1 [0.6-1.2m] 0.39 [0.37;0.42] <0.001**

  Level 3 >1.2m 0.59 [0.56;0.64] <0.001**

 
Spatial
location***  - <0.001**

Second cross-
sectional survey

    

(56% - n=57) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

6.96 [5.54;8.73] <0.001**

  Occupied Bedside 3.14 [2.84;3.48] <0.001**

 Ward MITU* 1 -
  SITU 0.18 [0.13;0.24] <0.001**

 Height Level 0 <0.6m * 1 -
  Level 1 [0.6-1.2m] 0.39 [0.37;0.42] <0.001**

  Level 3 >1.2m 0.31 [0.29;0.33] <0.001**

 
Spatial
location***  - <0.001**

Third cross-
sectional survey

    

(27% - n=57) Bedside Non Bedside* 1 -

  
Non occupied
Bedside

2.24 [2.04;2.46] <0.001**

  Occupied Bedside 1.5 [1.39;1.61] <0.001**

 Ward MITU* 1 -
  SITU 0.09 [0.07;0.12] <0.001**

 Height Level 0 <0.6m * 1 -
  Level 1 [0.6-1.2m] 0.47 [0.44;0.49] <0.001**

  Level 3 >1.2m 0.6 [0.57;0.64] <0.001**

 
Spatial
location***  - <0.001**

Risk factors were assessed each day by using Generalized Additive Mixed Model,
adjusted on Bedside (occupied or not), Ward, height and location.
§. n: number of locations
*. reference class
**. p<0.05
***. spatial location was modelled by thin plate splines not providing unique IR.
IR: incidence ratio SITU: surgical intensive care unit MITU: medical intensive care
unit
doi: 10.1371/journal.pone.0076249.t003

incidence ratios (IR) related to TVC on the bed rails (reference
class). Bed wheels, bedside table, storage trolley, alcohol hand
gel pump, and top of the storage unit, were all more
contaminated than bed rails. Bed wheels were most
contaminated with a mean TVC 1.97 times higher than on the
bed rail (95% Confidence Interval 95%CI [1.12; 3.21]). Alcohol
hand gel (wall mounted) and alcohol hand gel pump (patient
bed side), (IR=0.27 [0.1; 0.79]), bedside table (IR=0.087 [0.01;
0.74]), storage trolley (IR=0.41 [0.18; 0.91]) and the top of the
storage unit (IR=0.62 [0.25; 0.89]) were all less contaminated
than bed rails. The comparison of TVC between porous and
non-porous materials and between different materials showed
no significant differences (p=0.53 and p=0.198, respectively).

Surfaces located at occupied bedsides were always more
contaminated than surfaces located away from bed spaces (IR
at 1.72, [1.54; 1.91] -first cross-sectional survey-, 3.14 [2.84;
3.48] -second cross-sectional survey- and 1.5 [1.39; 1.61] -third
cross-sectional survey). Apart from the first cross-sectional
survey, surfaces located at unoccupied bedsides were also
more contaminated (IR at 0.78, [0.87; 0.89] -first cross-
sectional survey-, 6.96 [5.54; 8.73] -second cross-sectional
survey- and 2.24 [2.04; 2.46] -third cross-sectional survey).
Surfaces sampled at SITU were always significantly less
contaminated than surfaces sampled at MITU (IR at 0.77 [0.59;
0.99] -first cross-sectional survey-, 0.18 [0.13; 0.24] -second
cross-sectional survey-, and 0.09 [0.07; 0.12] - third cross-
sectional survey).

Air contamination was variable, showing less contamination
at unoccupied bedsides during the first cross-sectional survey,
a cluster around the nurse’s station during the second cross-
sectional survey, and more contamination at bedsides during
the third cross-sectional survey (air samples IRs at unoccupied
and occupied bedsides were 0.74 [0.58; 0.93] and 1.11 [0.91;

Table 4. Effects on bacterial counts for the different surface
types sampled.

Cofactors  IR [CI95%] p-value
Surface types Bed rails* 1 -
 Floor 1.18 [0.76;1.83] 0.46
 Alcohol hand gel pump 0.27 [0.1;0.79] 0.02**

 Bed side table 0.087 [0.01;0.74] 0.03**

 Bed wheels 1.97 [1.21;3.21] 0.01**

 Chair (seat) 0.45 [0.09;2.24] 0.32
 Clinical waste bin 0.61 [0.29;1.28] 0.19
 Storage trolley 0.41 [0.18;0.91] 0.03**

 Storage unit - shelf 0.62 [0.21;1.84] 0.39
 Storage unit - top 0.48 [0.25;0.89] 0.02**

 Top of computer 1.06 [0.61;1.84] 0.83
Ward MITU* 1 -
 SITU 0.89 [0.64;1.24] 0.49

The adjusted incidence ratios (IR) are presented with their 95% confidence
intervals.
*. reference class
**. p<0.05
SITU: surgical intensive care unit MITU: medical intensive care unit
doi: 10.1371/journal.pone.0076249.t004
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1.35] respectively -first cross-sectional survey-, 0.71 [0.52;
0.97] and 0.6 [0.47; 0.76] respectively -second cross-sectional
survey-, and 1.92 [1.54; 2.39] and 1.96[1.66; 2.31] respectively
-third cross-sectional survey). Figure 2 shows clusters of
contamination predominantly around bed locations but, during
the second cross-sectional survey, in the air around the nurse’s
station.

The regression models developed for this study, which utilise
TVC data, location, and occupancy, were found to be accurate
at the first and second cross-sectional surveys (with
percentages of explained deviance at 81,5 and 85,7%
respectively). However these models were less accurate for the
third cross-sectional survey. Sample location remained a
significant factor in predicting colony counts (p<0.0001) for all
cross-sectional surveys.

Discussion

In this study we have analyzed the environmental variability
of micro-organisms within an ICU healthcare environment, by
measuring TVCs on surfaces and in air. We aimed to establish
an approach to facilitate monitoring and analysis of microbial
contamination, which could be applied to healthcare settings,

even if our approach did not evaluate precisely all the factors
involved in the contamination variability (such as healthcare
worker behaviour, patient status, modification of air-
conditioning, people-traffic). The results showed that, for this
particular environment, while contamination relationships were
complex, some patterns emerged that could be modelled and
used to estimate the distribution of microbial contamination. In
this particular setting hospital design per se could not be the
sole determinant of contamination. Staff behaviours, cleaning
procedures and the nature and severity of a patient’s condition
may also have been important contributors to levels of bacteria.
Such factors are amenable to mitigation by changes in ward
layout to influence staff behaviour, improving accessibility to
cleaning staff and by changes in healthcare components
design such as use of easy clean surfaces.

Occupation of bed spaces and illness severity appeared to
be consistent predictors of contamination. Air and surface
TVCs were generally higher in MITU where patients are usually
long stay and require care, such as feeding, in which there is
substantial interaction with their bedside environment and
particularly with relatives. These long-stay patients have more
of their own possessions within the bed space and visitation is
encouraged, tending to be regular and prolonged. SITU

Figure 2.  Estimation of the counts of micro-organisms.  Results were adjusted on bedside, bed occupancy, height level (for
surface analysis), Ward and location. Total Viable Count (TVC) estimations for the three cross-sectional surveys at the different
height levels including air sampling are presented at each location. The coloured scale showed the values of TVC.
doi: 10.1371/journal.pone.0076249.g002
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patients are usually short-stay, ventilated and require high
intensity support from staff. Visitation is limited to 2 people per
bedside and is only allowed during certain hours. Visitors, due
to the severity of illness on this ward, have limited interaction
with patients and the bedside environment. Prolonged stay in
ICU has been shown to increase the risk of acquiring an HCAI
[21].

Colony counts in air and on surfaces varied between
locations, height, bedside location and bed occupancy. There
were differences between air and surface samples, indicating
that the source of microbes may differ. Air sampling provides
both a measure of transient aero-contamination and a snap
shot of more widespread microbial levels. Surface sampling is
affected by aero-contamination, as some particles will
eventually settle on surfaces. King et al. [22] showed that
bioaerosols can be deposited across a room at different
distances from a source, due to air movement, which can be
modified by furniture and people behaviour. Organisms that
have settled may then be transferred to other sites by touch,
and by air eddy currents generated by human traffic. Surface
samples are highly affected by human behaviours within the
ward environment, and particularly by touch. Our results show
that the air and surfaces within bed spaces were consistently
highly contaminated. In contrast, the aero-contamination at the
SITU nurse’s station during the second cross-sectional survey,
occurred in the context of low surface TVCs. We also observed
surfaces, which were heavily contaminated in areas of low
aero-contamination. Surfaces within the middle height range
were generally less contaminated. Even though the cleaning
regime wasn’t comprehensively assessed, cleaning was
probably also an important factor in determining microbial
levels.

Our results, in combination with other studies [6,23,24],
support continuous environmental monitoring and not only in
response to outbreaks. Continuous monitoring will permit the
establishment of baseline data for units that can be used to
target interventions. Sampling will also permit the identification
of surfaces that are linked with higher levels of contamination
where a design solution may be sought. It is important not only
to evaluate the hotspots within a ward, such as bed spaces and
nurses stations, but also to evaluate more globally what the
HCAI risks are of a 'functional unit'. Such data can be used to
inform benchmarking as a means of evaluating cleaning
regimes [25,26,27]. Numerous studies meticulously describe
surface cleanliness as these relate different cleaning
procedures, including detergent use, design, behaviour
[12,28,29,30,31], and production and distribution of aerosols
[13,32,33]. Our work did not evaluate cleaning procedures nor
the factors involved in distribution of aerosols. ITU cleaning
does take place throughout the day as nurses actively wipe
down surfaces with alcohol within bed spaces. Therefore we
cannot state with certainty what impact cleaning would have
had on our results. It was not our intention to ascertain the
quality of cleaning but to measure 'real life' microbial levels
within a hospital environment. Better cleaning protocols and

systems would doubtless have great impact at those sites
identified as high risk. Our work does however provide
information that could promote easier, more effective cleaning
for less effort by better design and use of space.

HCAI has not been eliminated despite increased
interventions [15,34,35] and it is not known which component
of the control process is most effective nor which to pursue
further. Levels of micro-organisms within the environment may
be related to healthcare design and/or processes. A scientific
approach to studying the relationship between healthcare
design and HCAI risk has been problematic due to the
multitude of factors that affect a patient’s interaction with both
people and environment. Healthcare environments, hospital
design and healthcare behaviours contribute to the risk of
HCAI, in addition to the health status of each patient. These
components include numerous variables including cleaning
regimes, ventilation, bed locations and occupancy, windows
and doors, material, staff and patient movements and height
level. The complex interactions that do and can occur within
the healthcare setting should be borne in mind when
monitoring contamination. In this study we assessed the spatial
variability of contamination, using a monitoring approach based
on surface and air sampling at different location, height and
time. Even when the main covariates were taken into account
(distance to bed, bed-occupancy, care unit, location, height
level, surface type), spatial variability still remained. This
indicates that other cofactors were influencing contamination.
This approach however can be used to assess the spatial
variability of contamination over the working day, or before and
after a specific intervention or event (e.g. an intervention in the
ventilation system or a major contamination). By identifying
areas of high levels of consistent contamination, the
methodology employed in this study will be useful to monitor
contamination variability within the healthcare environment and
should help to assist in the planning of interventions.
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