
HAL Id: hal-01337989
https://hal-amu.archives-ouvertes.fr/hal-01337989

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural reinforcement learning for behaviour synthesis
Claude Touzet

To cite this version:
Claude Touzet. Neural reinforcement learning for behaviour synthesis. Robotics and Autonomous
Systems, 1997, �10.1016/S0921-8890(97)00042-0�. �hal-01337989�

https://hal-amu.archives-ouvertes.fr/hal-01337989
https://hal.archives-ouvertes.fr

C. TOUZET, "Neural Reinforcement Learning for Behaviour Synthesis, " to appear in Robotics and
Autonomous Systems, Special issue on Learning Robot: the New Wave, N. Sharkey Guest Editor, 1997.

Neural Reinforcement Learning for Behaviour Synthesis

Claude Touzet
DIAM - IUSPIM

University of Aix-Marseille III

F - 13397 Marseille cedex 20, France

Email: Claude.Touzet@iuspim.u-3mrs.fr

ABSTRACT

We present the results of a research aimed at improving the Q-learning method through

the use of artificial neural networks. Neural implementations are interesting due to their

generalisation ability. Two implementations are proposed: one with a competitive

multilayer perceptron and the other with a self-organising map. Results obtained on a

task of learning an obstacle avoidance behaviour for the mobile miniature robot Khepera

show that this last implementation is very effective, learning more than 40 times faster

than the basic Q-learning implementation. These neural implementations are also

compared with several Q-learning enhancements, like the Q-learning with Hamming

distance, Q-learning with statistical clustering and Dyna-Q.

Key Words: Neural Q-learning, reinforcement learning, obstacle avoidance behaviour,

self-organising map, autonomous robotics.

INTRODUCTION

In this paper, we present the results of research aimed at improving reinforcement

learning through the use of artificial neural network implementations. Reinforcement

learning proposes the synthesis of robot behaviours with the help of reinforcement

functions. A reinforcement function uses a measure of the robot's performance to guide

the learning. It is no longer necessary to write an algorithm generating the corresponding

behaviours, something particularly interesting when such algorithms are not available

(too complex, too expensive, etc.). Moreover, the synthesised behaviour integrates the

local performance (i.e., the heterogeneity) of the sensors, the motors, the noise of the

environment, etc.

Reinforcement learning applications imply the mapping of situations to actions in huge

situation-action space. On the other hand, the duration of the learning phase must be as

short as possible to reduce engineering costs of development. Therefore, generalisation

is of major importance in the process. Neural network generalisation, as shown by

connectionist industrial developments, is very attractive. In this paper, we review neural

implementations of Q-learning and also propose two new implementations.

In section 1, the real mobile robot Khepera and the environment of our experiments are

described. This section also presents the reinforcement learning function used for the

synthesis of an obstacle avoidance behaviour. The following section 2 reviews the Q-

learning method, certainly the most used reinforcement learning method. Section 3 points

out the credit assignment problem of the Q-learning method and briefly describes several

enhancements. Section 4 introduces the first neural network implementation of the Q-

learning, pointing out its advantages and limitations. Section 5 presents our proposal for

a multilayer perceptron implementation of Q-learning. In section 6, a second neural

network implementation is proposed using a self-organising map. Comparisons between

the different implementations of Q-learning are presented in section 7. Results are

discussed in section 8. Concluding remarks are given in section 9.

1. THE MINIATURE MOBILE ROBOT KHEPERA

 Khepera is a miniature mobile robot [1] having a diameter of 6 cm and a weight of 86 g

(figure 1). Two continuously independently controllable wheels allow the robot to move

around. Eight infra-red sensors help the robot to perceive its environment. Their

detection range is between 5 and 2 cm. Sensor data are real values between 0.0 (nothing

in front) and 1.0 (obstacle nearby), each coded in 10 bits. All the measurements depend

significantly on various factors like the distance from the obstacle, the colour, the

reflectance, the vertical position, etc. The heterogeneity between sensors is important

(figure 2) and reflects the sensor manufacturing process. The computational power of the

robot is equivalent to a M68331. Energy autonomy is thirty minutes.

Figure 1. The miniature mobile robot Khepera.

Forwards

1

2
3 4

5

6

78

Figure 2. Maximum value of the sensor response associated to a small obstacle (a pen)

rotating around the robot at a constant distance of 2 cm. The sensor value is drawn as a

line segment starting at the sensor location and oriented to the obstacle. The length of the

segment represents the measured sensor value (the grey circle represents a value of 1.0

which is only achieved by sensor 4 and 8). The obstacle right in front of sensor 4

generates a response value of 1.0, but the same obstacle in front of sensor 5 generates a

response value of 0.4. Sensor 4 is then two times more effective than sensor 5.

1.1 Task, environment and indicator

Task

The task Khepera has to perform is to move forward when possible and avoid obstacles.

Two behaviours are involved. One, with a higher priority, moves forward. A second

proposes avoidance actions. The first behaviour is so simple, i.e., move forward when

nothing is detected by the sensors, that it is of no interest here. However, the second

behaviour involves knowing how much to turn and in which direction so as to avoid the

obstacles. Our goal in dealing with this particular task is not to solve a problem for which

solutions were proposed years ago [2], but to work with a problem just complex enough

to be not trivial, but also simple enough to allow a good understanding of the

implications of neural implementations. The Braitenberg vehicle [3] described in the

commercial package of Khepera will serve us as a benchmark for our experiments. The

avoidance algorithm used is described in figure 3.

Let I be the sensor vector, I = {i1, i2, i3, i4, i5, i6, i7, i8},

let A be the speed vector, A = {al, ar}

ar = c1 . i1 + c2 . i2 + c3 . i3 + 10

al= c3 . i4 + c2 . i5 + c1 . i6 + 10

where c1, c2 and c3 are negative constants. We choose for these constants the value

given by the commercial package: c1 = -17, c2 = -11, c3 = -7

Figure 3. The obstacle avoidance used by the Braitenberg vehicle that will serve as

benchmark for our experiments.

Environment

The environment is an arena the size of a sheet of A4 paper. Obstacles are film cans or

whatever is suitable (lipsticks, erasers, etc.). Obstacles are put in the arena at the

beginning of the experiment (figure 4). Figure 5 shows a trace of the Braitenberg

avoidance behaviour of Khepera in the arena.

Figure 4. One of the environments of our experiments with the miniature robot Khepera

in the centre. Obstacle are put in the arena at the beginning of each experiment.

Start

Figure 5. Trace of the Braitenberg avoidance behaviour of Khepera. There are 210

iterations (or moves). The small black circles indicate the robot centre position. The large

circles represent the robot size (5.5 cm in diameter). Two obstacles have been put in the

arena (in dark): a diskette box (3.5") and a film can.

Indicator of the task

The distance to the obstacles (G(t)) measures the correspondence of the robot's

behaviour with the target behaviour. For each obstacle encountered by the robot during

the experiment only one value is memorised which is the shortest distance.

G(t) = DO(t) / t ; where DO(t) is the sum of the shortest distances from the beginning

of the experiment (the higher the sensor value, the shorter the distance to the obstacle).

The graph is averaged over seven runs, the mean and standard deviation1 are displayed.

This graph will help us evaluate the training procedures proposed in the following

material.

1,0

0,0

0,2

0,4

0,6

0,8

450 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

450 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 6. Distance to the obstacles measured during a Braitenberg avoidance behaviour.

The results reported are averaged over 7 runs. The robot comes really near to the

obstacles (sensor value approximately equal to 1.0).

1.2 Reinforcement function

The robot receives the following reinforcement signals during the learning phase:

+1 if it is avoiding, or

 -1 if a collision occurs, or

 0 otherwise.

1 The standard deviation is computer as: sqrt ((sumX[i] - mean)^2 / N)

The robot is avoiding when the present sum of sensor values is smaller than the last one,

the difference been greater than 0.10. A collision occurs when the sum of the six front

sensor values is greater than 2.90 or the sum of the two back sensor values is greater

than 1.95. Threshold values like (0.10, 2.90, 1.95) have been determined after extensive

experiments. In front of a wall (e.g., the boundary of the arena) a collision corresponds

to a distance less than 2 cm. This distance value of 2 cm. is inferred from the sensor

performance (fig. 2). It does not necessary mean that the robot touched the wall.

The same absolute value is used for positive and negative reinforcement signals, despite

the fact that a collision may be considered much more important than an avoidance

action. In the literature, many authors attach more importance to negative rewards,

sometimes as much as 100 times more effect on the learning rule. However, we consider

the reinforcement function as a qualitative criterion and we do not want to introduce

qualitative bias through weighting of the rewards (bias are nevertheless unavoidable: a

bias is introduce by any choice of the threshold values).

2. Q-LEARNING

2.1 Reinforcement Learning

Reinforcement learning is the learning of a mapping from situations to actions so as to

maximise a scalar reward or reinforcement signal [4]. A robot learns a given behaviour

by being told how well or how badly it is performing as it acts in each given situation.

As feedback, it receives a single information item from the world. By successive trials

and/or errors, the robot determines a mapping function which is adapted through the

learning phase. For this purpose, numerous reinforcement learning algorithms are

available (e.g., TD(λ), AHC [5]), among which the Q-learning method is certainly the

most used.

2.2 Q-learning

Reinforcement learning synthesises a mapping function between situations and actions

by maximising a reinforcement signal. Q-learning [6] algorithms store the expected

reinforcement value associated with each situation-action pair, usually in a look-up table.

Three different functions (figure 7) are involved: memorisation, exploration and updating

[7]. Figure 8 describes the Q-learning algorithm.

Reinforcement
function

Evaluation function Update function

World

Action Situation

Robot Memory

Reinforcement

(situation, action, Q value)

Figure 7. Q-learning method functional decomposition. In response to the present

situation, an action is proposed by the robot memory. This action is the one that has the

best probability of reward. However, this proposition may be modified by the evaluation

function to allow an extensive exploration of the situation-action space. After the

execution of the action by the robot in the real world, a reinforcement function provides a

reinforcement value. This value, here a simple qualitative criterion (+1, -1 or 0), is used

by the updating algorithm to adjust the reward value (Q) associated with the situation-

action pair. The learning is incremental, because the acquisition of the examples is carried

out in real situations.

1. Initialisation of the robot memory: for all situation-action pairs, the associated Q value

is 0 (i.e., Q (i , a)= 0).

2. Repeat :

a - Let i be a world situation.

b - The evaluation function select the action a to performed:

a = argMax (a) (Q (i , a'))

where a' represent any possible action in situation i .

The exploration process modify the selected action to explore the situation-action

space:

a* = a + ∆a

∆a is usually a randomly selected with a Gaussian distribution N (0, σ), σ usually

decreases as the learning proceed.

c - The robot executes the action a in the world. Let r be the reward (r can be null)

associated with the execution of the action a in the world.

d - Update the robot memory:

Q t+1(i , a) = Q t(i , a) + ß(r + γ . Max (Q t(i' , a')) - Q t(i , a)). eq. 1

where i' is the new situation after having carried out the action a in situation i ,

a'' is any action which is possible from state i' and 0 < ß, γ < 1.

Figure 8. A general algorithm for the Q-learning method.

A look-up table implementation of Q-learning was used with the miniature robot Khepera

to generate an obstacle avoidance behaviour. In all our experiments, ß = 0.9 and γ = 0.5.

For practical reasons, each sensor value is coded as 1 bit (the threshold is 0.2). If the

measured value is below the threshold then the sensor bit value is 0, otherwise it is 1.

Therefore, the total number of possible situations is restricted to 28 (i.e., 256). For the

same practical reasons, the total number of actions is reduced to 5 different speeds per

motor, reducing the total number of possible actions to 25. Figure 9 gives the size of the

look-up table for all the possible coding.

1 bit 2 bits 3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 9 bits10 bits

Size 6400 1.6 106 4.3 108 1.1 1011 2.7 10137.0 1015 1.8 10184.6 1020 1.2 1023 3.0 1025

Figure 9. Size of the look-up table for all possible coding. There are 25 possible actions

per situation and 8 sensors.

The exploration function does not use the classical Gaussian distribution, but a uniform

distribution (centred at zero and decreasing proportionately with the number of

iterations). The results of the experiments are presented in two ways: an indicator of the

correspondence of the robot's behaviour with the target behaviour, i.e., the distance to

the obstacles as previously described (section 1.1) (figure 10) and a local performance

index L(t) (figure 11) [8].

L+(t) = R+(t) / t (respectively L-(t) = R-(t) / t) measures the effectiveness of the

learning process, i.e., the correspondence between what is taught and what is learned. t

is the number of robot moves executed by the avoidance behaviour module from the

beginning of the experiment. R+(t) (resp. R-(t)) is the number of moves that have been

positively (resp. negatively) reinforced from the beginning of the experiment. Graphs are

averaged over 5 runs.

1,0

0,0

0,2

0,4

0,6

0,8

310 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

310 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 10. Distance to the obstacles measured after 4000 learning iterations with classical

Q-learning. The results reported are averaged over 5 runs, standard deviation is also

reported. Distances to obstacles are greater than Braitenberg's implementation (fig. 6):

learning is interesting.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L+

Figure 11. Effectiveness of the learning process (after 4000 learning iterations):

proportion of moves executed by the obstacle avoidance module that received positive

reinforcements since the beginning of the experiment. Graphs are averaged over 5 runs,

standard deviation is also reported.

A trace of the behaviour of the miniature mobile robot Khepera after learning is given in

figure 12. The trajectory appears not as smooth as with the Braitenberg vehicle. One of

the reasons is certainly the 1 bit coding per sensor (where the Braitenberg vehicle uses 10

bits).

Start

Figure 12. Trace of the Q-learning avoidance behaviour of Khepera after 4000 learning

iterations. There are 70 iterations. It is the same environment as fig. 5.

Determining the number of learning iterations required is a difficult task. To this end, we

use an indicator: the total number of non-null Q values in the look-up table (figure 13). In

our case, we choose 4000 learning iterations, i.e., 2/3 of the maximum number of

situation-action pairs that can be experienced.

Nb. it. 2 000 3 000 4 000 6 000 8 000 10 000 16 000

% 9.0 10.4 10.8 11.9 12.2 14.6 15.9

Figure 13. Percentages of the total number of non-null Q values in the look-up table

during a Q-learning synthesis of an obstacle avoidance behaviour. The size of the look-

up table is 6400.

It must be reported that, even after 4000 learning iterations, the synthesised behaviour is

not perfect. Figure 14 displays the graph of L- after learning, there are still negative

reinforcements experienced, but much less than what a pure random behaviour displays.

Moreover, the Braitenberg implementation also experiences negative reinforcements.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L- Random

Q-learning
Q-learning Random

Braitenberg

Braitenberg

Figure 14. Negative reinforcements experienced with a classical Q-learning

implementation after 4000 learning iterations, a random exploration behaviour and a

Braitenberg implementation. Graphs are averaged over 5 runs, standard deviation is also

reported.

3. CREDIT-ASSIGNMENT PROBLEM

Any difficulty in the use of Q-learning is the result of a situation space being so large

that, combined with all possible actions, an exhaustive exploration of all situation-action

pairs is impossible, as is also an exhaustive memorisation. For example, in the case of

the mobile robot Khepera, the total number of possible situations is ((2)10)8, not far from

1024. Even if the number of possible speeds per wheel is reduced to 25, the size of the

situation-action space is 3 1025. Working with a real robot implies mechanical

constraints: in this case, an action takes approximately 200 ms to be performed. In one

minute, a maximum of 300 actions can be executed. Therefore, there is an incredibly

small number of explored situation-action pairs versus unknown situation-action pairs.

This problem is called the structural credit-assignment problem. A solution to this

problem is the generalisation process: the use of experienced situation-action pairs to

induce ways of dealing with new unknown situations.

Several improvements emphasising generalisation have been proposed. Mahadevan et al.

uses Hamming distance to generalise between similar situations; the same authors also

use clusters to generalise across similar situation-action sets. Sutton proposes the Dyna-

Q model to speed up propagation through time of the Q values.

3.2 Q-Learning with weighted Hamming distance [9]

The main idea of this refinement is to compute a Hamming distance between the world

situation i and similar situations in order to apply the updating function on all of them.

Only one action is carried out, but many similar situations are updated using the same

reinforcement value. The Hamming distance between any two situations is simply the

number of bits that are different between them. Bits can be of different weights (i.e.,

weighted Hamming distance). Two situations are distinct if the Hamming distance

between them is greater than a fixed threshold (figure 15). This generalisation method is

limited to syntactic criteria: it is dependent on the coding of the situations.

a 1i

i 1

a a 2 a 3 a 4 a 5 a 6

i 2

i 3

i 4

i 5

i 6

0000

0001

0011

0111

1111

1110

Q

Figure 15. Generalisation using Hamming distance in black. In this example, the world

situation is i3 , the executed action is a6 , the threshold value for the Hamming distance is

1. Q (i3 , a6) is updated, but also Q (i2 , a6) and Q (i4 , a6).

Experiments with Khepera have been carried out using a Hamming distance of 1 (figures

16 and 17). As one can see, the performance is not high (but worse with a Hamming

distance of 2).

1,0

0,0

0,2

0,4

0,6

0,8

210 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

210 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 16. Q-learning with Hamming distance (of 1): distance to the obstacles measured

after 2000 learning steps. The results reported are averaged over 6 runs.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L-

L+

Figure 17. Effectiveness of Q-learning with Hamming distance (after 2000 learning

iterations): proportion of moves executed by the obstacle avoidance module that received

positive and negative reinforcements since the beginning of the experiment. Graphs are

averaged over 6 runs, standard deviation is also reported

The look-up table used is the same as in the previous section. However, learning is sped

up through the use of the Hamming generalisation process. Therefore, the total number

of learning iterations has been reduced to 2000, i.e., three times (figure 18) the

proportion of non-null Q values in the look-up table (fig. 13). It must be pointed out that

the generalisation process used here may conduct to invalid actions. For example, when

a forwards action is positively rewarded, the generalisation process also rewards the

same forwards action in front of small obstacle (only 1 or 2 sensors activated).

Therefore, a modification of the Hamming generalisation process has been introduced:

statistical clustering

Nb. it. 1000 H1 1500 H1 2000 H1 1000 H2 1500 H2 2000 H2

% 30.8 32.5 32.5 80.8 80.8 82.5

Figure 18. Proportion of non null Q values in the look-up table in function of the number

of learning iterations for a Hamming distance of 1 (H1) and 2 (H2). These percentages

are between three (H1) and eight (H2) times the maximum value obtained for classical Q-

learning. Some of these values conduct to invalid actions.

3.3 Q-Learning with statistical clustering

Mahadevan et al. [9] propose an other generalisation method less dependent on the

coding of the situations: statistical clustering. Here, each action is associated with a set of

situations giving information concerning the usefulness of performing the action in a

particular class of situations. Clusters are sets of “similar” situation instances that use a

given similarity metric. All situations that appear in the same cluster are updated together

(figure 19). Here again, generalisation is limited to syntactic criteria.

a 1i

i 1

a a 2 a 3 a 4 a 5 a 6

i 2

i 3

i 4

i 5

i 6

C
lu

st
er

 c
2

as
so

ci
at

ed
 w

ith
 a
2

Q

Figure 19. Generalisation using statistical clustering. If one of the situations of the

cluster c2 is the world situation and a2 as been carried out then all Q values of the cluster

c2 are updated. In this example, the world situation is i3 and the action carried out is a2 ,

then Q (a2 , i3) is updated together with Q (a2 , i1) ,Q (a2 , i2) and Q (a2 , i5) .

Our implementation of the statistical clustering generalisation process on the learning of

an obstacle avoidance for Khepera is the following:

- Each forwards action associated with situations involving less obstacles than the

resent situation is a cluster (a Hamming distance of 1 is used),

- Each backwards action associated with situations with no obstacles behind is a

cluster (a Hamming distance of 1 is used),

- It is not legitimate to have cluster associated with rotational actions.

Results are displayed in figures 20 and 21. It seems that clustering is not better, even

worse, than the Hamming generalisation in our case. The proportion of non-null Q

values is 17.1% after 2000 learning iterations.

1,0

0,0

0,2

0,4

0,6

0,8

210 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

210 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 20. Q-learning with statistical clustering : distance to the obstacles measured after

2000 learning steps. The results reported are averaged over 5 runs. As shown by the

standard deviation graph, the synthesised behaviours are very different in their

performances.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L-

L+

Figure 21. Effectiveness of Q-learning with statistical clustering (after 2000 learning

iterations): proportion of moves executed by the obstacle avoidance module that received

positive and negative reinforcements since the beginning of the experiment. Graphs are

averaged over 5 runs, standard deviation is also reported.

3.4 Dyna-Q

It may be difficult to rerun the same sequence of situation-action pairs so as to back

propagate delayed rewards (equation 1 in figure 8). As a result, Sutton [10] imagined

adding a model of the world in which situation-action pairs are randomly carried out

again (figure 22). The reinforcement function is modified in order to deal with the

modelled world. In this case, only situation-action pairs previously seen (in the real

world) will lead to a non-zero reinforcement reward. The returned reward r’ is the same

as in the real world. When the experience is performed in the real world, the exploration

process is the same as described earlier in section 2.2. Otherwise (i.e., for an experience

in the modelled world) the exploration function is a random selection of actions.

Reinforcement
function

Evaluation function Update function

World

Action Situation

Reinforcement

World model

Situation

Reinforcement

Q (situation, action)

Figure 22. Dyna architecture: the world model is used as a direct replacement for the

world. In addition to the usual functioning, learning steps are also run using the model in

place of the world, using predicted outcomes rather than actual ones. For each real

experience with the world, many hypothetical experiences (randomly) generated by the

world model can also be processed and learned from. The cumulative effect of these

hypothetical experiences is that the policy approaches the optimal policy given the current

model.

The same look-up table is used as in the classical Q-learning implementation. This

implementation needs fewer actions carried out in the real world, but the number of

learning iterations is increased. The proportion of non-null Qvalues in the look-up table

is 19.4% after 1000 learning iterations and 26.7% after 2000 learning iterations. There

are ten hypothetical experiences for each real world action (the maximum possible

number is 25: the number of possible actions). The ten hypothetical actions are randomly

selected using a uniform probability. The results obtained with Khepera for an obstacle

avoidance behaviour synthesis are given in figures 23 and 24.

1,0

0,0

0,2

0,4

0,6

0,8

150 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

150 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 23. DYNA Q-learning: distance to the obstacles measured after 1000 learning

iterations. The results reported are averaged over 5 runs.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L-

L+

Figure 24. Effectiveness of DYNA Q-learning after 1000 learning iterations : proportion

of moves executed by the obstacle avoidance module that received positive and negative

reinforcements since the beginning of the experiment. Graphs are averaged over 5 runs,

standard deviation is also reported.

3.5 Comparisons

Experiments on the learning of an obstacle avoidance behaviour for the mobile robot

Khepera show that these three methods speed up the learning (figure 25). Our criterion

for having learnt is no more collision occur (estimated subjectively by the experimenter),

together with a minimum number of positive rewards (e.g., the behaviour that consists in

stopping far from any obstacle is good at experiencing no collision, but not with

reference to the minimum of positive rewards). The minimum positive rewards requested

is chosen by the experimenter.

The performances after learning are not perfect. This comes from the fact that a unique

bit is used to code each sensor value (with a threshold at 0.2). This is certainly not

precise enough. However, it is impossible to use all the bits available per sensor (10).

The generalisation is limited to syntactic criterion (Hamming and clustering). There is no

specific generalisation with the Dyna-Q implementation, just help in the propagation of

the reward signals.

AHC [5] is very similar to Q-learning. The major difference is that AHC builds two

functions (one for evaluating the interest of the situation, one for proposing an action in a

situation) where Q-learning builds only one function (evaluation and policy in the same

time). We think that the results reported here should also apply to the AHC method, but

the necessary experiments were not conducted.

Learning time (sec) Nb. of learning it. Memory size (%)

Q-learning 1680 4000 10.8

+ Hamming (1) 1020 12000 32.5

+ Clustering 860 6000 17.1

DYNA-Q 540 11000 19.4

Figure 25. Comparison of several different implementations of Q-learning in terms of

learning time, number of learning iterations and memory size. The learning time is the

time in seconds needed to synthesise an obstacle avoidance behaviour. It reflects the

number of real world experiments required. The number of learning iterations is the

number of updates of the look-up table (after real world or modelled world experiments).

The memory size is the proportion of non-null Qvalues in the look-up table (size 6400).

4. NEURAL Q-LEARNING

The first neural network implementation of reinforcement learning occurred at the

beginning of the eighties [11]. Neural Q-learning implementations were proposed in the

nineties[12]. Neural implementation seems to offer many advantages: quality of the

generalisation and limited memory requirement for storing the knowledge. The

memorisation function uses the weight set of the neural network. The memory size

required by the system to store the knowledge is defined, a priori, by the number of

connections in the network. It is independent of the number of explored situation-action

pairs.

4.1 Ideal implementation

The ideal neural implementation will provide, in a given situation, the best action to

undertake and its associated Q value (figure 26). This action should be the best available

action in the situation, but how can we be sure of that?

Action

Q value

Situation

Figure 26. Ideal neural Q-learning model providing for an input situation the best action

to undertake and its associated Q value.

The direct implementation of the ideal neural network implementation of Q-learning with

a multilayer backpropagation network implicates several drawbacks. The updating

function (figure 27) is a weight modification algorithm, here the well-known gradient

error backpropagation algorithm [13]. An error signal on the output neurones must

therefore be defined for each output neurone. How can a quantitative error signal be

defined when the only available information is of qualitative nature? The definition of this

error is restricted to simple cases where only two actions are possible. For example, one

of the first applications used to demonstrate the power of the neural implementation of Q-

learning was the inverse pendulum with only two actions (moving the cart left or right).

In this case, it is easy to deduce from the reinforcement signal the desired output value. If

the reinforcement signal received is positive (+1) then the output provided by the neural

network is the desired one. If the reinforcement signal received is negative (-1) then the

desired output is the inverse of the output proposed by the network. For applications

involving many possible actions, like mobile robotics (e.g., Khepera allows 400

different actions), dealing with negative rewards is more difficult and requires

modifications of the ideal implementation.

Reinforcement
function

Evaluation function Backpropagation

World

Action Situation

Reinforcement

Figure 27. The direct implementation of the ideal neural network implementation of Q-

learning with a multilayer backpropagation network.

4.2 QCON

Lin [14] proposes the QCON model: a multilayer perceptron implementation of the Q-

learning algorithm the characteristic of which is to have only one output neurone. There

are as many QCON networks as there are actions (figure 28). It is impossible to

generalise across actions.

Q value of action a1Situation

Q value of action anSituation

..

.

Figure 28. The QCON model: only one output neurone per multilayer neural network.

Each network is associated with a unique action and the output is considered as the Q

value associated with the situation-action pair. There are as many QCON networks as

there are actions. Generalisation across situation-action pairs is impossible. Learning

concerns only one network per iteration.

4.3 Unmapping in multilayer backpropagation neural networks

Generalising across actions implies an implementation architecture composed of only one

network so as to be able to use every reinforcement signal to update the network.

Moreover, generalising across actions implies that the output layer codes actions and not

Q values. Since the neural model is still a multilayer perceptron with a backpropagation

learning algorithm, an error must be defined on the output layer. There is no problem

when the reinforcement signal is positive, the proposed action is the desired one. But,

with negative reinforcements, how can a desired action be chosen? At least, even if it is

not possible to find the right situation-action association, a mechanism must be built that

will unmap the wrong situation-action association proposed by the network.

The first idea that comes to mind when the number of possible actions increases is to

learn the inverse mapping [12]. The problem then is to determine among all those left

which action is the most in opposition. Because the output of the network is numerical,

we can change the sign of the output values. However, this is a harmful way of

unlearning. Nobody knows what has been deleted. Representation on a neural network

is distributed, so it is not possible to delete only one association (or situation-action pair)

without interfering with the rest of the learned knowledge. Moreover, a negative

reinforcement does not always mean that the error is important, and to learn the inverse

action can be defective. With the same goal in mind, Ackley [15] proposes the use of the

complement of the generated output. Results are completely dependent on the nature of

the application and are not satisfactory. We propose in the next section an action

decomposition mechanism that allows unmapping without destroying the memory of the

network.

4.4 Modifying the reinforcement function

Since problem of unmapping only arises with negative reinforcement signals, it may be

an interesting solution to modify the reinforcement function. However, it is impossible to

learn, in the general case, using only positive rewards. Know-how, on the contrary, tells

us that it is frequently simpler to refine reinforcement functions with negative

reinforcements.

5. A COMPETITIVE MULTILAYER PERCEPTRON FOR THE

IMPLEMENTATION OF THE Q-LEARNING

As opposed to the implementations seen in section 2 and 3, neural reinforcement restricts

learned knowledge. The ideal neural network implementation (section 4) has the great

advantages of enormously reducing the memory requirements. However, the executed

situation-action pairs are not explicitly stored, nor is the associated Q value. Only the

most important feature of Q-learning is conserved: to be able to propose the action with

the best reward potential for a given world situation. The more realistic QCON proposal

does not take full advantage of a neural implementation. As many networks as the

number of actions are necessary, greatly limiting generalisation.

We propose a neural implementation model that is intermediate to the ideal

implementation model and QCON (it allows us to generalise between actions, but the

associated Qvalue is not stored explicitly):

Step 1: Actions are grouped together in sets of agonist-antagonist actions. This can be

done through a decomposition mechanism starting with complex actions and ending with

the elementary actions as shown in figure 29.

Robot
move

Right motor
move

Left motor
move

Right motor move forward

Right motor move backward

Left motor move forward

Left motor move backward

Figure 29. Example of decomposition into elementary agonist-antagonist action sets:

from the complex action 'robot move' to the elementary sets of actions, like 'right motor

move forward'.

Step 2: These sets of elementary actions are coded on the output layer of the unique

multilayer perceptron. One output neurone is used for each elementary action set (for the

example given in figure 29, there are four output neurones). Into the set, the action to

perform is coded by the output value of the neurone. In the example of the mobile robot

Khepera, we use ten speeds per motor. Each neurone output varies from -1 to +1 which

correspond respectively to speed 0 and speed 9. We chose a uniform distribution for the

other values. It is extremely important for the generalisation process to respect continuity

in the coding of the action set (order preserving coding). Therefore, speed 0 must be

coded by a value less different from speed 1 than speed 9 (respectively -1 , -0.8 and +1).

Step 3: Having two neurones per motor (one for forward speeds and the other for

backward speeds), the system has to decide which actions will be executed. We choose

to interpret the neurone output value as a certainty value of the neural network in its

proposition. Interpreting the network output values as certainty values is a common

practice in connectionism, in particular in the domain of fuzzy reasoning [16]. A

competition between the two 'agonist-antagonist' neurones allows us to select the actions

to undertake (figure 30). It is important to note that the fastest speed is always selected,

either forwards or backwards. For example, it is extremely unlikely that a stop action

will be selected. The following assumption is made: a non-null motor speed always

allows us to avoid the obstacle.

Step 4: If the reinforcement signal received after carrying out the action is positive, then

the desired output is the executed action (figure 30) and backpropagation can occur.

Step 5: If the reinforcement signal received after carrying the action is negative, then the

value of each agonist-antagonist pair is exchanged. The desired output is the counterpart

value of the executed action (figure 30) and backpropagation can occur. This method

allows us to limit the size of the error, which depends on the certainty of the network.

Output of the network

Competition

+ Exploration of the
situation-action space

Reinforcement signal > 0

Reinforcement signal < 0

Back Front Back Front

The color represents the
activity value of the neuron.
 The darker the color,
the higher the value

Figure 30. Through competition between the neurones in each pair, the neurone of

maximum value is selected. The exploration process can modify the proposal so to

explore the situation-action space. If the reinforcement signal is positive then the error is

equal to the value added by the exploration process. There is no error for the other

neurone of the pair. If the reinforcement signal is negative then values of each pair of

neurones are exchanged.

The five steps of this method for a competitive multilayer neural network implementation

of Q-learning are summarised in figure 31.

1. Random initialisation of the network weights.

2. Repeat :

a. Let i be an input situation for the neural network, and (o1, o2) the outputs

computed by propagation of activities. The action a to perform is given by

competition :

a = owinner + ∆o,

 where ∆o comes from the exploratory process as described in 2.2 and

owinner = Max. (o1, o2).

b. Execute the action a in the world.

c. Let r be the reinforcement signal associated with the execution of a in i . The

weights are updated by an algorithm which minimises the output error. It is

necessary to determine a desired output value d for each output neurone, depending

on r .

If r = 0 then there is no modification.

If r = +1 then dselect = a . Only weights connected to the selected neurone are

modified.

If r = -1 then d1 = o2 and d2 = o1 (exchange of values). All weights are modified.

Figure 31. Learning algorithm for a competitive multilayer neural network

implementation of the Q-learning.

Experiments with the competitive multilayer perceptron implementation of Q-learning on

the synthesis of an obstacle avoidance behaviour for the miniature mobile robot Khepera

are displayed in figures 32 and 33. The multilayer perceptron has only one hidden layer

of 4 neurones, an output layer of 4 neurones and 8 input neurones. All input neurones

are connected to the hidden and output neurones. There is a threshold connection on each

hidden neurone. The total number of connections is 84.

1,0

0,0

0,2

0,4

0,6

0,8

90 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

90 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 32. Competitive multilayer neural network implementation of Q-learning: distance

to the obstacles measured after 500 learning iterations. The results reported are averaged

over 5 runs.

0,5

0,0

0,1

0,2

0,3

0,4

3000 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3000

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L-

L+

Figure 33. Effectiveness of Q-learning with a competitive multilayer neural network

implementation (after 500 learning iterations): proportion of moves executed by the

obstacle avoidance module that received positive and negative reinforcements since the

beginning of the experiment. Graphs are averaged over 5 runs, standard deviation is also

reported.

6. SELF-ORGANISING MAP Q-LEARNING

Experiments reported in the previous section show that the competitive multilayer

perceptron implementation learns faster than the other reviewed implementations:

generalisation is better. We think that this is due to the localised coding on the output

layer: one output neurone for each action set; and also to the competition between output

neurones. Therefore, we chose to investigate the implementation of Q-learning with a

neural network model that is completely dedicated to these two points: the self-organising

map (also known as the Kohonen map) [17]. We call this self-organising map

implementation of the Q-learning Q-KOHON. There are other competitive neural

network models which have the same properties: ART [18], CMAC [19], etc.

6.1 Self-organising map

Structure

There is only one layer of neurones. Each neurone is connected to the inputs. A

neighbourhood is defined for each neurone. The neighbourhood size depends on the

application. In this paper, we use four neighbours per neurone.

Learning

Coding on a self-organising map is localised. Each neurone represents a particular class

(or cluster) of the inputs (figure 34). Competition occurs between all the neurones of the

map. During the learning phase, the neurones of the self-organising map approximate the

probability density function of the inputs. The learning algorithm is presented in figure

35.

Repeat

For each example E of the learning base, E = {x,y}

For each neurone i of the SOM,

d(i)= |x - wx,i| + |y - wy,i| (equation 2)

Select the closest neurone: j = argMin (i) (d(i))

Modify the weights of j using a learning coefficient 0<λ<1:
 wj,x(t+1) = wj,x(t) + λ.(x - wj,x(t)),

wj,y(t+1) = wj,y(t) + λ.(y - wj,y(t))

Modify the weights of the neighbours of j with a learning coefficient µ
using the same rule (usually 0<µ<λ)

Figure 34. Self-organising map learning algorithm.

Learning projects the N dimensional space represented by the training data on the M

dimensional space of the self-organising map (usually two dimensions). This projection

respects the relative distribution of the training data. The neighbourhoods allow us to

generate a "continuous" mapping of the N dimensions space on the self-organising map.

Close N dimensional data are close in the M dimensions of the self-organising map.

Learning base
(input)
(input)
(input)

...

(input1, ..., inputn)

Figure 35 Self-organising map model. During the learning phase, the network weights

are tuned so as to reduce the difference between the input to the network and the selected

neurone.

6.2 Q-KOHON

During the learning phase, the neurones of the self-organising map approximate the

probability density function of the inputs. The inputs are situation, action and the

associated Q value (figure 36). The learning phase associates with each neurone of the

map a situation-action pair plus its Q-value. It is a method of state grouping involving

syntactic similarity and locality [20]. The number of neurones equals the number of

stored associations. The neighbourhood property of the Kohonen map allows it to

generalise across similar situation-action pairs.

Reinforcement
function

Evaluation function Learning algorithm

World

Action Situation

Reinforcement

Sit. Action Q

Figure 36. The self-organising map implementation of Q-learning.

The Q-KOHON uses the self-organising map as an associative memory. This associative

memory stored triplets. Part of a triplet is used to probe the self-organising map in search

of the corresponding information. Here, situation and Qvalue are used to find the action:

the best action to undertake in a world situation is given by the neurone that has the

minimal distance to the input situation and to a Q value of value +1 (figure 37 a). To this

end, equation 2 in the self-organising map learning algorithm (figure 34) has been

changed to:

d(i)= |world_situation - Wsituation, i| + |1 - WQvalue,i|

The selected neurone corresponds to a triplet (situation, action, Q value). It is this

particular action that should offer the best reward in the world situation (figure 37 b).

(, Action,)

World World

(Situation, ,+1)

a b

Figure 37. Selection of the best action to perform in the world situation. The Kohonen

map is used as an associative memory: information is probed with part of it.

a/ The world situation and a Q value of +1 are given as inputs.

b/ The answer is a selected neurone which weights give situation, Q value and the

associated action.

Training:

The learning base is built incrementally (as for the competitive multilayer

implementation). Each action of the Khepera robot is a learning example: the number of

learning iterations is the total number of experiments (actions carried out in real world

situations).

The learning algorithm updates the Q value weight (using equation 1) and, also, the

situation and action weights. The neurone corresponding to the situation and the action

effectively performed is selected. The distance used is different from the search process

of the most rewarding action. It includes the situation and action vectors, but nothing

concerning the Q value. The equation 2 is modified in the following manner:

d(i)= |world_situation - Wsituation,i| + |1 - Waction,i|

 Together with the selected neurone, the four neighbours are also updated. The learning

coefficient is 0.9 for the selected neurone and 0.5 for the neighbourhood. During the

learning, the influence on the neighbours decreases proportionally to the inverse of the

number of iterations. Results are given in figures 38 and 39. 100 iterations are sufficient

to learn a correct behaviour. There are sixteen neurones in the map (176 connections (11

x 16)). The weights are randomly initialised around 0.5 for sensors and 0.0 for motors.

Qvalues are initialised to 0.0. The inputs are of three kinds: a situation vector, an action

vector and a Q value. The first eight inputs correspond to the eight sensors. In this neural

implementation, the ten coding bits of each sensor are used. The ninth and tenth inputs

correspond to the left and right motor commands respectively. The eleventh input

corresponds to the Q value.

1,0

0,0

0,2

0,4

0,6

0,8

470 Nb. of obstacles

S
en

so
r

va
lu

e
(d

is
ta

nc
e

to
 th

e
ob

st
ac

le
)

0,5

0,0

0,1

0,2

0,3

0,4

470 Nb. of obstacles

S
ta

nd
ar

d
de

vi
at

io
n

Figure 38. Q-KOHON : distance to the obstacles measured after 100 learning iterations.

The results reported are averaged over 5 runs.

0,5

0,0

0,1

0,2

0,3

0,4

3760 Nb of iterations

0,5

0,0

0,1

0,2

0,3

0,4

3760

S
ta

nd
ar

d
de

vi
at

io
n

Nb of iterations

L-

L+

Figure 39. Effectiveness of Q-KOHON (100 learning iterations plus 276 test iterations):

proportion of moves executed by the obstacle avoidance module that received positive

and negative reinforcements since the beginning of the experiment. Graphs are averaged

over 5 runs, standard deviation is also reported.

It is also interesting to visualise the performance traces of the robot after learning (figures

40 and 41)

Figure 40. Performance traces (118 iterations) of the robot with Q-KOHON after

learning.

Figure 41. Performance traces (76 iterations) of the robot with Q-KOHON after learning.

Studying the network weights, we can interpret the learned behaviour. Figure 42

presents for each neurone its eight weights linked to the situation input after 100 learning

iterations. These weights only depend on the explored situations and represent for each

neurone the prototype situation associated. For example the diagram for the neurone

number one (N1 above left) shows that N1 is associated with a situation presenting an

obstacle on the right side, principally coded by sensor 6, but also to a lesser level by

sensors 5 and 7. This obstacle must be very near (about 2 cm), since the value

corresponding to sensor 6 is equal to 1. This obstacle is large enough to be detected by

sensors 5 and 7, and to a lesser extent by sensors 4 and 8. One should recall the

heterogeneity of the sensors (figure 2) when looking at the prototype of each class of

situations, particularly evident in N11 with the less effective sensor 5. All kinds of

situations encountered during the learning are represented here. Due to the topological

constraints of the maps, neighbouring neurones are associated with similar situations:

similar sensors involved (shape of the obstacle) and similar values (distance to the

obstacle).

N1

0

0,5

1

1 2 3 4 5 6 7 8

N2

0

0,5

1

1 2 3 4 5 6 7 8

N3

0

0,5

1

1 2 3 4 5 6 7 8

N4

0

0,5

1

1 2 3 4 5 6 7 8

N5

0

0,5

1

1 2 3 4 5 6 7 8

N6

0

0,5

1

1 2 3 4 5 6 7 8

N7

0

0,5

1

1 2 3 4 5 6 7 8

N8

0

0,5

1

1 2 3 4 5 6 7 8

N9

0

0,5

1

1 2 3 4 5 6 7 8

N10

0

0,5

1

1 2 3 4 5 6 7 8

N11

0

0,5

1

1 2 3 4 5 6 7 8

N12

0

0,5

1

1 2 3 4 5 6 7 8

N13

0

0,5

1

1 2 3 4 5 6 7 8

N14

0

0,5

1

1 2 3 4 5 6 7 8

N15

0

0,5

1

1 2 3 4 5 6 7 8

N16

0

0,5

1

1 2 3 4 5 6 7 8

Figure 42. Visualisation of the eight weights linked to the situation input for each

neurone of the map after 100 learning iterations in a task of obstacle avoidance behaviour

synthesis. The higher the value of the sensor, the more sensitive the corresponding

neurone to an obstacle. These diagrams represent the sixteen shapes of obstacles used for

the classification. Each class is associated with an appropriate action.

The properties of the self-organising map allow us to predict that, if a correct behaviour

is learned (i.e., only positive rewards are experienced), then all neurones will code

positive Q values. Figure 43 presents the evolution of the weights corresponding to the Q

value during the learning phase for all neurones. For N2, the curve shows that the Q

value of the associated situation-action pair starts initially at 0.0, decreases to -0.5 and

after 100 iterations, increases to 0.65. Initialisation puts all values to 0.0. The Q values

become positive for all neurones: the actions undertaken in the encountered situations are

correct. Figure 44 displays the mean of the Q values of all the neurones during the

learning phase: the global performance of the robot is increasing, i.e., something

rewarding is learned.

N1

0

0,5

1

1 2 3 4 5 6 7 8

N2

-0,5

0

0,5

1

1

N3

0

0,5

1

1 2 3 4 5 6 7 8

N4

0

0,5

1

1 2 3 4 5 6 7 8

N5

0

0,5

1

1 2 3 4 5 6 7 8

N6

0

0,5

1

1 2 3 4 5 6 7 8

N7

0

0,5

1

1 2 3 4 5 6 7 8

N8

0

0,5

1

1 2 3 4 5 6 7 8

N9

0

0,5

1

1 2 3 4 5 6 7 8

N10

0

0,5

1

N11

0

0,5

1

1

N12

0

0,5

1

N13

0

0,5

1

1 2 3 4 5 6 7 8

N14

0

0,5

1

1 2 3 4 5 6 7 8

N15

0

0,5

1

1 2 3 4 5 6 7 8

N16

0

0,5

1

1 2 3 4 5 6 7 8 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50

 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50

 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50
 1 2 3 4 5 10 20 50

 1 2 3 4 5 10 20 50

 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50
 1 2 3 4 5 10 20 50 1 2 3 4 5 10 20 50

-0,5

-0,5 -0,5 -0,5

Figure 43. Evolution of the Q value associated with each neurone (or class of situation-

action represented by a neurone). The Q values, starting from 0.0, converge to positive

values for all neurones, demonstrating that the learned behaviour is rewarding. There are

100 learning iterations, but the learning does not completely stop after 100 (λ = µ =

0.001). After 500 iterations, only situation-action pairs giving positive rewards are

stored in the map. The number of iterations in the figure as to be multiplied by 10.

0,5

1

 0 10 50 100 200 500 Number of
learning iterations

M
ea

n
Q

 v
al

ue
Figure 44. Mean Q values of all neurones during the learning phase. The global

performance is increasing: the resulting behaviour is correct

In conclusion, we note that, unlike the multilayer perceptron implementation, the

interpretation of the weights is possible. Moreover, if a correct behaviour is learned (i.e.,

only positive or null reinforcement values are experienced), then all neurones will code

positive Q values. This last fact results in the optimisation of the stored knowledge.

7. COMPARISONS

Figure 45 presents the learning time, number of learning iterations and memory size of

the two artificial neural network Q-learning implementations studied previously. A

comparison with the other implementations of Q-learning has been done. Results

displayed in figure 46 show that the self-organising map Q-learning implementation

requires less memory and learns faster than all the others (by a factor of 40). The Q-

KOHON implementation has also the best behaviour after learning, i.e., less negative

reinforcements received than all the other implementations (fig. 39).

Learning time (sec) Nb. of learning it. Memory size

Competitive MLP 190 500 84

Q-KOHON 40 100 176

Figure 45. Comparison of two different neural network implementations of the Q-

learning in terms of learning time, number of learning iterations and memory size. The

learning time is the time in seconds needed to synthesise an obstacle avoidance

behaviour. It reflects the number of real world experiments required. The number of

learning iterations is the number of updating of the neural network. The memory size is

the number of connections in the neural network (one real value per connection).

Memory size

Q
-K

O
H

O
N

C
om

pe
tit

iv
e

M
LP

D
Y

N
A

-Q

C
lu

st
er

in
g

H
am

m
in

g

Q
-le

ar
ni

ng

Nb. of iterations
Learning time

Figure 46. Comparison of several implementations of Q-learning on a task of learning an

obstacle avoidance behaviour. The self-organising map Q-learning implementation

(right) requires less memory and learns faster than all the others and more than 40 times

faster than the basic Q-learning implementation (left).

8. DISCUSSION

Results obtained demonstrate that the neural generalisation allows us to speed up the Q-

learning method. Starting from the QCON architecture, we have investigated the

competitive multilayer perceptron implementation and the self-organising map

implementation. The corresponding increase in performance seems to come from a

localised coding on the output neurones and competition between the neurones.

Therefore, other neural network models, like the ART (Adaptive Resonance Theory)

network [18] which displays a partly-localised coding and general competition between

the neurones, or the RBF (Radial Basis Function) network which enhances localised

coding and general competition between the neurones, should be investigated. However,

the unique property of neighbourhood of the Kohonen map, which influences the

generalisation process through the continuity of the coding, may be very important for

the quality of the results. In this case, we may have found with this implementation the

'ultimate' Q-learning implementation.

Reinforcement functions are usually hand-tuned and emerge after lots of experiments.

The reinforcement learning algorithm task is to improve the cumulative reward over time.

Despite a good learning phase (i.e., only positive Q values for all neurones of the self-

organising map) the obtained behaviour does not always exhibit the expected behaviour.

In our experiments, the learned behaviours show a large distribution of covered

distances. Figure 47 displays four curves corresponding to four different experiments. A

behaviour may exhibit a predilection for moving forward, or for moving backward, or

for small movements, or for change in its policy during the experiment. There is also

another behaviour, perhaps the most rewarding considering our reinforcement function

describes in 1.2. It is: move forward to an obstacle, stop before the sum of the sensor

values is above the threshold (2,90) and then move backward, and do it all again. This

sequence of actions maximises rewards, but it is something different from the expected

obstacle avoidance behaviour.

 5000

 4000

 3000

 2000

 1000

 0

-1000

-2000

-3000

4000

Covered distance

0 100 200 300 400 Iterations

a

b

c

d

Figure 47. Distances covered by Khepera during four different experiments of learning

an obstacle avoidance behaviour. Behaviour (a) displays a predilection for moving

forward , (b) prefers moving backward, (c) prefers small forward movements, (d)

changes its policy at the end of the learning phase (here 200 iterations).

8.1 Temporal credit-assignment problem

This result about the covered distances of several different experiments shows that

having an effective Q-learning implementation is not sufficient to solve an application. In

our particular case, the synthesised behaviour is a reactive behaviour. It does not

integrate sequences of actions. A solution would be to change the reinforcement function

to allow the taking into account of sequences of actions. Equation 1 (fig. 8) will then be

used to solve the temporal credit assignment problem. However, its efficiency is strictly

limited to short sequences of actions. The Q-learning implementation needs a concept of

historical states to deal with large sequences of actions. Temporal self-organising map

and recurrent neural networks [21] appear to be good candidates to this end.

The description of the reinforcement function is of tremendous importance and research

must be done for the design of reinforcement functions. We have started some work in

this direction and proposed to add to the learning system an external module containing

generic forbidden sequences of actions [22]. Experiments with the mobile robot Khepera

demonstrate that it is possible to constrain the synthesised behaviours to forward

avoidance behaviours.

The environment of our experiments is stationary; that is, the probabilities of making

state transition, or receiving specific reinforcement signals, do not change over time. One

may decide that this assumption makes our experiments trivial in that, after all, operation

in non-stationary environments is one of the motivations for building learning systems

[23]. In fact, the methods described here are effective in slowly varying non-stationary

environments, in particular if learning does not stop and if there is always a probabilistic

action selection function.

As expressed in section 1.1, obstacle avoidance in nothing else than a simple,

pedagogical task for mobile robotics, aimed at allowing comparisons between

reinforcement learning implementations. It is very difficult to achieve a solution with

tabula rasa learning techniques (i.e., pure reinforcement learning). Bias must be

incorporated to allow effective learning solutions, like: shaping, local reinforcement

signals, imitation, problem decomposition, reflexes, etc.

Shaping: start with very simple tasks, then increase the difficulty. This method is

particularly useful with supervised learning approaches [24].

Local reinforcement signals: whenever possible, give local reinforcement signals,

rewarding local actions (not far from immediate reinforcement signals) [25].

Imitation: learn by watching an other agent. The problem is to get the first agent to

perform the task. Today, this first agent must be human controlled in a task of obstacle

avoidance [26].

Problem decomposition: decompose complex behaviour into a collection of simpler ones,

and provide useful reinforcement signals for each one. This decomposition technique is

used in almost all successful robotics reinforcement learning experiments [8].

Reflexes: [27] provide the robot with a set of reflexes, i.e., initial knowledge that will

allow a better exploration of the search space (figure 48). This initial knowledge can be

ameliorated through learning.

Reinforcement
function

Evaluation function Update function

World

Action Situation

Reinforcement

Basic reflexes Neural network mapping:
situation, action, utility

Figure 48. Learning from Basic Reflexes. This method utilises a set of basic reflexes

every time its connectionist controller fails to generalise correctly its previous experience

to the current situation, i.e., the evaluation function does not find an input neurone

matching the current situation. The connectionist controller associates the selected reflex

with the situation in one step. The sensory situation is represented by a new unit of the

network and the selected reflex, or situation-action pair, is coded into the network

weights. This new association is tuned subsequently through reinforcement learning. The

neural network gets control more often as the robot explores the environment.

9. CONCLUSION

In this paper, we have presented the results of research aimed at improving reinforcement

learning through the use of neural network implementations. The same real robot,

environment and reinforcement function are used for all the experiments described in the

paper. After a brief description of the Q-learning method, we have pointed out the need

for generalisation. Several enhancements, including the Hamming distance, statistical

clustering and Dyna-Q were briefly described. The results obtained with these

implementations are interesting, but still insufficient at least in our experiment of learning

an obstacle avoidance behaviour for the miniature mobile robot Khepera. Therefore, we

have studied neural network implementations of Q-learning for their generalisation

properties and limited computer memory requirements. An ideal neural implementation is

proposed. It helps to understand the current limitations of the today implementations, like

QCON (a multilayer perceptron implementation of Q-learning). A competitive multilayer

perceptron implementation is then proposed that allows better generalisation. This

increase in performance seems to be the result of a localised coding on the output

neurones and competition between neurones. A second neural implementation that takes

full advantage of these two attributes is then proposed using a self-organising map.

Results obtained on a task of learning an obstacle avoidance behaviour for the miniature

mobile robot Khepera show that this last implementation is very effective.

It is our opinion that with a self-organising map implementation, Q-learning is no more a

research area but a tool at the disposition of the engineer to develop applications in

autonomous robotics. However, as discussed in section 8, there is still research to

conduct in the Q-learning domain. In particular, the design of reinforcement functions is

probably the most difficult part in the development of a reinforcement learning

application. To deal with more complicated behaviour synthesis than the reactive

behaviour chosen here, it is necessary to develop new Q-learning implementations. A

concept of historical states is needed to deal with large sequences of actions. Temporal

self-organising map and recurrent neural networks appear to be promising candidates to

this end.

9. 1 Acknowledgements

We thank all the K-Team members (LAMI-EPFL, Switzerland) for their interest in this

research and the use of one of the first Khepera robots.

10. REFERENCES

[1] F. Mondada, E. Franzi & P. Ienne, "Mobile Robot Miniaturisation: A Tool for

Investigation in Control Algorithms," Third International Symposium on Experimental

Robotics, Kyoto, Japan, October 1993.

[2] W. G. Walter, "An Imitation of Life," Scientific American, 182(5), 42-45, May

1950.

[3] V. Braitenberg, Vehicles: Experiments in synthetic psychology, MIT Press, 1986.

[4] L. Kaelbling, Learning in embedded systems, MIT Press, 1993.

[5] O. Holland & M. Snaith, "Extending the adaptive heuristic critic and Q-learning:

from facts to implications," Artificial Neural Networks, 2, I. Alexander and J. Taylor

(Eds.) Elsevier Science Publishers, 599-602, 1992.

[6] C. J. C. H. Watkins, "Learning from Delayed Rewards," Ph.D. thesis, King's

College, Cambridge, England, 1989.

[7] S. Sehad & C. Touzet, "Reinforcement Learning and Neural Reinforcement

Learning," ESANN 94, Editor M. Verleysen, D-Facto publication, Brussels, April

1994.

[8] M. Colombetti, M. Dorigo and G. Borghi, "Behavior Analysis and Training - A

Methodology for Behavior Engineering," Special Issue on Learning Autonomous

Robots, M. Dorigo Guest Editor, IEEE Transactions on Systems, Man and Cybernetics,

SMC-part B, Vol. 26, No. 3, 365-380, June 1996.

[9] S. Mahadevan & J. Connell, "Automatic Programming of Behavior-based Robots

using Reinforcement Learning," Artificial Intelligence, 55, 2, pp. 311-365, July 1991.

[10] R.S. Sutton, "Reinforcement Learning Architectures for Animats," Proceedings of

the First International Conference on Simulation of Adaptive Behavior, From Animals to

Animats, Edited by J-A Meyer and S.W. Wilson, MIT Press, pp. 288-296, 1991.

[11] A. G. Barto, R. S. Sutton & C. W. Anderson, " Neuronlike adaptive elements that

can solve difficult learning control problems," IEEE Transactions on Systems, Man and

Cybernetics, SMC-13: 834-846, 1983.

[12] A. G. Barto & P. Anandan, "Pattern Recognizing Stochastic Learning Automata,"

IEEE Transactions on Systems, Man and Cybernetics, SMC-15 : 360-375, 1985.

[13] D. Rumelhart, G. Hinton & R. Williams, "Learning internal representations by

error propagation," Parallel Distributed Processing, Vol. 1, D. Rumelhart & J. Mc

Clelland Eds. Cambridge, MIT Press, pp. 318-362, 1986.

[14] L-J. Lin, "Reinforcement Learning for Robots Using Neural Networks," PhD

thesis, Carnegie Mellon University, Pittsburgh, CMU-CS-93-103, January 1993.

[15] D. Ackley & M. Littman, "Interactions Between Learning and Evolution," Artificial

Life II, SFI Studies Sc. Complexity, vol.X, C. G. Langton & Co Eds. Addison-

Wesley, 487-509, 1991.

[16] C. Touzet & N. Giambiasi, "Application of Connectionist Models to Fuzzy

Inference Systems", in Parallelization in Inference Systems, Lectures Notes in Artificial

Intelligence 590, B. Fronhöfer & G. Wrightson Eds., Springer Verlag, April 1992.

[17] T. Kohonen, Self-Organisation and Associative Memory, Springer-Verlag, Berlin,

1984.

[18] G. A. Carpenter & S. Grossberg, "The ART of adaptive pattern recognition by a

self-organizing neural network," Proc. IEEE, March 1988.

[19] J. S. Albus, "A new approach to manipulator control: the Cerebellar Model

Articulation Controller (CMAC)," Trans. ASME, September 1975.

[20] R. A. Mc Callum, "Using transitional proximity for faster reinforcement learning,"

Proc. of the Ninth International Conference on Machine Learning, Morgan Kaufman

(GB), 1992.

[21] C. Touzet & N. Giambiasi, "The Connectionist Sequential Machine: a General

Model of Sequential Networks", Australian Conf. on Neural Networks, in Canberra, P.

Leong & M. Jabri Eds. Sydney University Electrical Engineering, NSW 2006,

Australia, February 1992.

[22] C. Touzet, S. Sehad & N. Giambiasi, "Improving Reinforcement Learning of

Obstacle Avoidance Behavior with Forbidden Sequences of Actions," International

Conference on Robotics and Manufacturing, Cancun, Mexico, 14-16 June 1995.

[23] L. Kaelbling, M. Littman and A. Moore, Reinforcement Learning: A Survey,

Journal of Artificial Intelligence Research 4 , 237-285, 1996.

[24] Dorigo M. & Colombetti M, "Robot Shaping: developping autonomous agents

through learning," Artificial Intelligence, vol. 71, n° 2, 321-370, 1994.

[25] M. Mataric, "Reward function for accelerated learning," In Cohen W.W. & Hirsh

H. (Eds), Proc. of the 11th Intern. Conf. on Machine Learning, Morgan Kaufman,

1994.

[26] L. J. Lin, "Self-improving reactive agents based on reinforcement learning,

planning and teaching," Machine Learning 8: 293-321, 1992.

[27] J. del R. Millàn, "Rapid, Safe and Incremental Learning of Navigation Strategies,"

Special Issue on Learning Autonomous Robots, M. Dorigo Guest Editor, IEEE

Transactions on Systems, Man and Cybernetics, SMC-part B, Vol. 26, No. 3, 408-420,

June 1996.

