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Abstract. Given a binary object (2D or 3D), its Betti numbers char-
acterize the number of holes in each dimension. They are obtained alge-
braically, and even though they are perfectly de�ned, there is no u nique
way to display these holes. We propose two geometric measures forthe
holes, which are uniquely de�ned and try to compensate the loss of geo-
metric information during the homology computation: the thickness and
the breadth. They are obtained by �ltering the information of the per-
sistent homology computation of a �ltration de�ned through th e signed
distance transform of the binary object.

1 Introduction

Homology computation is a very useful tool for the classi�cation and the under-
standing of binary objects in a rigorous way. It provides a class of descriptors
summarizing the basic structure of the considered shape.

A binary object is a set X � Zd together with a connectivity relation. We
will assume through this paper that X is a volume (d = 3) and the elements
of X will be called voxels. However, the generalization to higher dimensions is
direct.

Roughly speaking, homology deals with the \holes" of an object. Holes can be
classi�ed by dimensions: 0-holes correspond to connected components, 1-holes
to tunnels or handles and 2-holes to cavities. When computing homology,we
usually expect to �nd the number of these holes (called the Betti numbers) and a
representative of each hole (called representative cycle of a homology generator).
Nevertheless, the homology computation works at an abstract level (the chain
complex) which ignores the embedding of the object. Thus, the geometry of the
object is in some way neglected.

Moreover, holes are di�cult to visualize. We can know how many they are,
but not where they are. This is due to the fact that in homology computation,
a choice for determining a linearly independent set of holes must be done. This
is something di�cult to apprehend: for instance, we remind that a c ube with its
interior and faces removed (as depicted in Fig. 1) contains �ve 1-holes instead
of six.

The aim of this paper is to endow Betti numbers with an additional informa-
tion containing a geometric interpretation. We de�ne two measures| thickness



Fig. 1. There are only �ve 1-holes in this object, and there is no natural wa y to state
where they are.

and breadth|which, unlike homology generators, are uniquely determined by
the object and can be used as concise topology descriptors. They are obtained
through the persistent homology of the �ltration induced by the signed distance
transform of the volume.

Previous e�orts have been made to combine homology and geometry. We
cite herein some works that are related to our problem. Erickson and Whittle-
sey founded an algorithm in [EW05] that computes the shortest base for the
�rst homology group for oriented 2-manifolds. Dey et al. [DFW13] developed
a similar work, but also classifying the 1-holes into tunnels and handles. Chen
and Freedman [CF10] measured the 1-holes of a complex by the \length" of the
homology generators and they also gave an algorithm to compute the smallest
set of homology generators. Zomorodian and Carlsson introduced thelocalized
homology in [ZC08], which allows to locate each homology class in a subset of a
given cover. This cover, or collection of subcomplexes whose union contains the
complex, successfully give a geometric sense to the Betti numbers.

Contributions

We de�ne two geometric measures that enrich the Betti numbers of a binary
volume. They are uniquely de�ned up to a choice of connectivity relation and
distance. They can be computed through a distance transform and persistent
homology, so it has matrix multiplication complexity over the number of voxels
in the bounding box of the volume. These measures can be considered aspairs
of numbers associated to each homology generator but also visualized as three-
dimensional balls on the volume.

2 Preliminaries

2.1 Cubical Complexes and Homology

Cubical Complex | This section is derived from [KMM04]. For a deeper un-
derstanding of these concepts, the reader can refer to it. Anelementary interval
is an interval of the form [k; k + 1] or a degenerate interval [k; k], where k 2 Z.
An elementary cubein Rn is the Cartesian product of n elementary intervals,



and the number of non-degenerate intervals in this product is itsdimension. An
elementary cube of dimensionq will be called q-cube.

Given two elementary cubes� and � , we say that � is a face of � if � � � .
It is a primary face if the di�erence of their dimensions is 1. Similarly, � is a
coface of � if � � � . A cubical complex is a set of elementary cubes with all of
their faces. Theboundary of an elementary cube is the collection of its primary
faces.

Chain Complex | A chain complex (C� ; d� ) is a sequence of groupsC0, C1,
: : : (called chain groups) and homomorphismsd1 : C1 ! C0, d2 : C2 ! C1, : : :
(called di�erential or boundary operators) such that dq� 1dq = 0, 8q > 0.

Given a cubical complex, we de�ne its chain complex as follows:

{ Cq is the free group generated by theq-cubes of the complex;
{ dq gives the \algebraic" boundary, which is the linear operator that maps

every q-cube to the sum of its primary faces.

The elements of the chain groupCq, which are formal sums ofq-cubes with
coe�cients in Z2, are called q-chains. They can be seen as sets of cubes of the
same dimension.

Homology Groups | A q-chain x is a cycle if dq(x) = 0, and a boundary if
x = dq+1 (y) for some (q+1)-chain y. By the property dq� 1dq = 0, every boundary
is a cycle, but the reverse is not true: a cycle which is not a boundary contains a
\hole". The q-th homology group of the chain complex (C� ; d� ) contains the q-
dimensional \holes": H (C)q = ker( dq)=im(dq+1 ). This set is a �nitely generated
group, so there is a \base" typically formed by the holes of the cubical complex.
Since our ring of coe�cients is Z2, this group is isomorphic to Z � q and � q is the
q-th Betti number.

Cubical complex associated to a binary volume | Given a binary volume, we
can de�ne two di�erent associated cubical complexes encoding the6 or the 26-
connectivity relation.

{ Primal associated cubical complex (26-connectivity): every voxelx = ( x1; x2; x3)
generates the 3-cube [x1; x1 + 1] � [x2; x2 + 1] � [x3; x3 + 1] and all its faces.

{ Dual associated cubical complex (6-connectivity): let us �rst adapt the no-
tion of clique to our context. A d-clique is a maximal (in the sense of inclu-
sion) set of voxels such that their intersection is ad-cube. First, for every
voxel (in fact 3-clique) x = ( x1; x2; x3) of the volume, we add the 0-cube
� = [ x1] � [x2] � [x3]. Then, for every d-clique (d < 3) in the volume, we add
to the cubical complex a (3� d)-cube such that its vertices are the voxels of
the d-clique.

These cubical complexes can be de�ned for any dimension. Figure 2 illustrates
both complexes.



Fig. 2. Left: a binary volume. Center: its primal associated cubical com plex. Right: its
dual cubical complex

2.2 Persistent Homology

This section introduces the persistent homology. A more rigorous presentation
can be found in [EH08] and the references therein.
A �ltration is a �nite (or countable) sequence of nested cubical complexesX 1 �
X 2 � � � � X n . It can also be described by a functionf on the �nal complex X n ,
which assigns to eachq-cube the �rst index at which it appears in the complex.
Since it is a sequence of cubical complexes, a cube cannot appear strictly before
its faces, so the functionf must verify

f (� ) � f (� ); 8� � � (1)

Therefore, a function f : X ! R de�ned over a cubical complex is a�ltration
function if its image is a �nite (or countable) set and if it satis�es Eq. (1).
Given such a function, its �ltration is the sequence F f (X ) = f X i g

n
i =0 , where

a0 < a 1 < � � � < a n are the images off and X i = f � 1(]�1 ; ai ]).
As illustrated in Fig. 3, the homology groups of the complex can evolve as

\time" goes on. The persistence diagram[EH08, p. 3] records these changes: a
q-hole being born in X i and dying (or vanishing) in X j is represented in the
persistence diagram as the point (i; j ). This is also called aP-interval in [ZC05].
A homology generator ofX n , which never dies, is represented by the point (i; 1 ).
The reader can �nd some persistence diagrams in Sect. 4. Persistent homology
can also be visualized in terms of barcodes [Ghr08], where each point (i; j ) is
represented as an interval in the real line.

We can assign a pair of cubes (� i ; � j ) to each P-interval ( i; j ). The �rst cube
creates the hole (e.g., a point in a new connected component or the edge that
closes a handle) while the second one merges the hole into the set of boundaries
(e.g., the edge that connects two connected components, or the square that �lls
a handle). The reader could try to �nd these pairs of cubes in the �lt ration
described in Fig. 3.

There has been an extensive research in the computation of persistent homol-
ogy. An algorithm in matrix multiplication time was introduced in [MMS11] . The
algorithms present in [ZC05,MN13] have cubical worst-time complexity,but they
seem to behave better in practice. An algorithm adapted for cubical complexes
was developed in [WCV12].
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Fig. 3. A �ltration. X 1 : there are two 0-holes (connected components).X 2 : one 0-hole
dies. X 3 : a 1-hole is born. X 3 : that 1-hole dies.

Note that in this article we do not use �Cech, Vietoris-Rips nor Alpha com-
plexes, as it is usually done in the persistent homology literature. The �ltrations
considered are based on a function de�ned over a cubical complex.

2.3 Distance Transform

Given a binary volume X � Z3, its distance transform DTX is the map that
sends every voxelx 2 X to DTX (x) = min y2 Z3 nX d(x; y). It can be seen as
the radius of the maximal ball centered at x and contained in X . Note that
we must consider one speci�c distance for the volume:L p metrics such as the
Manhattan distance (L 1), the Euclidean distance (L 2) or the chessboard distance
(L 1 ); distances based on chamfer masks [Mon68,Bor84] or sequences of chamfer
masks [MDKC00,NE09], etc.

There exist linear time algorithms for computing the Euclidean distance on
nD binary objects [BGKW95,Hir96,MRH00,MQR03].

We can then consider the signed distance transform, which maps everyvoxel
x 2 X to � DTX (x) and x =2 X to DTZ3 nX (x).

3 The Two Measures

3.1 Motivation

The main motivation for this work comes from the desire of comparing binary
volumes obtained from real acquisition of complex structures. Using mere Betti
numbers for this objective can be ine�ective, so we thought of enhancing this
basic homological information by de�ning two geometry-aware measures for the
holes.

In the following we give an intuitive introduction to the two new m easures. We
consider two binary images which are repeatedly eroded and dilated respectively,
and we comment what happens to their homology groups. Then we �gure out
how we can treat this problem with persistent homology.

When we erode the image in Fig. 4-(a), we observe that a 1-hole disappears
(Fig. 4-(b)), a 0-hole is created (Fig. 4-(c)) and a 0-hole disappears (Fig. 4-(d)).
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Fig. 4. Two images being eroded and dilated. We can notice a change in its homology
at every step.

On the other hand, when we dilate the image in Fig. 4-(e), a new 1-hole appears
(Fig. 4-(f)), a 0-hole vanishes (Fig. 4-(g)) and a 1-hole disappears (Fig. 4-(h)).

Thanks to persistent homology, we can record these events. Given a binary
volume X � [0; m1] � [0; m2] � [0; m3] � Z3, we build the associated primal (or
dual) cubical complex K of the bounding box [0; m1] � [0; m2] � [0; m3]. Then
we compute a �ltration function f associated to the signed distance transform
of X : the 3-cubes (0-cubes) are mapped to the value of their associated voxels
(cf. Sect. 2.1). The image of the rest of the cubes is coherently assigned in order
to produce a �ltration, that is, each q-cube, for 0� q � 2 (1 � q � 3), takes the
minimum (maximum) value of its 3-dimensional cofaces (0-dimensional faces).

Let a0 < a 1 < � � � < a i = 0 < � � � < a n be the di�erent values of f over the
volume. Thus, we can consider the �ltration Ff (K ):

X 0 = f � 1(]�1 ; a0]) � � � � � X � � � � � X n = f � 1(]�1 ; an ])

Let us now see how the previously described phenomena are encodedin the
persistent homology of the �ltration Ff (K ). Note that the eroded images are
now seen in reversed time:

{ Fig. 4-(b): a 1-hole is born in negative time (1b{);
{ Fig. 4-(c): a 0-hole dies in negative time (0d{);
{ Fig. 4-(d): a 0-hole is born in negative time (0b{);
{ Fig. 4-(f): a 1-hole is born in positive time (1b+);
{ Fig. 4-(g): a 0-hole dies in positive time (0d+);
{ Fig. 4-(h): a 1-hole dies in positive time (1d+);

Since we are interested in the homology groups of the given volume, we only
consider the persistent intervals that start at negative time and �ni sh at positive
time. We can give an intuitive and physical interpretation to those events.



0b{ A 0-hole being born at time t0 < 0 means that the maximal ball included
in that connected component has radius� t0;

0d+ A 0-hole dying at time t0 > 0 means that the shortest distance between
that connected component and any other is 2� t0;

1b{ A 1-hole being born at time t0 < 0 means that � t0 is the smallest radius
needed for a ball included inX that, once removed, breaks or vanishes that
hole;

1d+ A 1-hole dying at time t0 > 0 means that the maximal ball that can pass
through that hole has radius t0;

2b{ Same as 1b{;
2d+ A 2-hole dying at time t0 > 0 means that the maximal ball that can �t

inside that hole has radiust0;

Thus, for q = 1 ; 2, the time t at which a q-hole is born can be seen as the
thickness of the hole, or how far it is from being destructible. We will call it
thickness. Also, the time t at which a q-hole dies can be interpreted as a kind
of size or breadth. We choose this second term, since the size of a 2-hole is
better understood as the volume it covers or the area of its boundary.These two
terms are not suitable for dimension 0, so we use the termsbreadth (again) and
separability respectively.

3.2 De�nitions

Let X � [0; m1] � [0; m2] � [0; m3] � Z3 be a binary volume andd : Z3 ! R+ a
distance. Consider thesigned distance transform

sDTX (x) =

(
� minf d(x; y) : y =2 X g ; x 2 X
minf d(x; y) : y 2 X g ; x =2 X

Depending on which connectivity relation we use for the volume, we build its as-
sociated cubical complexK (cf. Sect. 2.1) and the �ltration function f X induced
by sDTX (cf. Sect. 3.1).

The thickness and breadth of the q-holes ofX are the pairs f (� i k ; j k )g� q

k=1 ,
where f (i k ; j k )g� q

k=1 are the P-intervals of the �ltration f X such that i k < 0 and
j k > 0 for all 1 � k � � q. We can represent these pairs as points inR2 in the
thickness-breadth diagram.

The �nal step of the �ltration is the full cubical complex associated t o the
bounding box of the volume. If the volume is not empty, as the boundingbox
has one connected component there exists aP-interval ( � i; 1 ) of dimension
0. We will represent this thickness-breadth pair as (� i; � 1) in the thickness-
breadth diagram. As a consequence, a volume has� 0 � 1 separation values. This
is coherent with its interpretation, as there are only n � 1 shortest distances
betweenn objects.

Note that the thickness-breadth pairs are uniquely de�ned for the �l tration
and they only depend on the connectivity relation of the volume and the distance
considered.



3.3 Visualization

The breadth and thickness values of a volume can be visualized in terms of balls,
as it was suggested in Sect. 3.1. Given a thickness-breadth pair (i; j ) with its
(non-unique) associated pair of cubes (�; � ) (cf. Sec. 2.2), we can also assign a
pair of voxels (p; q) to them. For the primal (dual) associated cubical complex,
according to its construction (cf. Sect 2.1), we choose any coface of dimension 3
(face of dimension 0) with the same image underf for each cube and we take
its associated voxel in the original volume. We call these voxels, which are not
unique, v(i ) and v(j ).

Therefore, for each hole we can visualize its thickness by the ball centered
at v(i ) with radius i , and similarly for its breadth. Figure 5 illustrates this
procedure.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of visualization of the thickness and the breadth thro ugh balls. Top:
a binary image (a) with the balls of H 0 (b) and H 1 (c). Bottom: a binary volume (d)
which contains two chained volumetric tori, its breadth (e) and its thickness balls (f)
of dimension 0 and 1.

4 Results

Our implementation for computing the breadth and the thickness uses the DGtal
library [DGt] for the distance transform and the Perseus software [Nan]for the



persistent homology. In order to obtain the centers of the balls, we developed a
speci�c software. The following volumes were voxelized with theBinvox software
[Min,NT03].

Figure 6 shows some examples of thickness-breadth diagrams. For each bi-
nary volume, we show the diagram containing the thickness-breadth pairs of the
homology groupsH0 (red circles), H1 (green triangles) and H2 (blue squares).
Note that we represent the pairs (i; 1 ), associated to the \broadest" connected
component of the volume, as (i; � 1).

We can appreciate the fractal structure of the Menger sponge after three
iterations in its diagram. There are only three possible values for the breadth
and the thickness: (1; 30 +1

2 ), (1; 31 +1
2 ) and (1; 33 +1

2 ). For the lamp [Rey15], we
can easily recognize a lot of similar holes and a bigger one, which traverses the
volume along the z-axis. The small 2-hole follows from a discretization error.
The diagram of the Colosseum volume [Gas15] presents a regular shape. All the
1-holes (i.e., the doors) have similar measures, except for one which has greater
thickness. It corresponds to the ground oor concentric corridor.

Figure 7 illustrates the pertinence of the visualization described in Sect. 3.3.
More examples are available on [GL].

5 Conclusion and Future Work

This paper introduces a concise and rigorous geometrical and topological infor-
mation for binary volumes that extends the Betti numbers. This could be used
for a statistical analysis of the volume or a better understanding of itstopological
features.

An interesting issue that should be addressed in the near future isthe stability
of this de�nition. Are the breadth and thickness stable under small perturbations
of the volume? How much do these values change when we consider di�erent
connectivity relations or distances?

In addition, it seems that the intersection of the thickness and breadth balls
with the volume could provide a heuristic for computing geometry-aware homol-
ogy and cohomology generators.
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