
HAL Id: hal-01373190
https://amu.hal.science/hal-01373190

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selection of variables structured by regularization in a
multi-task framework

Antoine Bonnefoy, Ismael Ouamlil, Jean-Baptiste Veyrieras, Pierre Mahé

To cite this version:
Antoine Bonnefoy, Ismael Ouamlil, Jean-Baptiste Veyrieras, Pierre Mahé. Selection of variables struc-
tured by regularization in a multi-task framework. Conférence francophone sur l’apprentissage au-
tomatique (CAp), Jul 2016, Marseille, France. �hal-01373190�

https://amu.hal.science/hal-01373190
https://hal.archives-ouvertes.fr

Sélection de variables structurée par régularisation jointe dans un

cadre multi-tâches

Antoine Bonnefoy1, Ismael Ouamlil2, Jean-Baptiste Veyrieras2, et Pierre Mahé2

1Université Aix-Marseille, Laboratoire d’Informatique Fondamentale, Marseille, France.
2bioMérieux, Bioinformatics Research Department, Marcy L’Etoile, France.

14 avril 2016

Résumé

Motivated by diagnostic applications in the field
of clinical microbiology, we introduce a joint in-
put/output regularization method to perform struc-
tured variable selection in a multi-task setting where
tasks can exhibit various degrees of correlation. Our ap-
proach extensively relies on the tree-structured group-
lasso penalty and explicitly combines hierarchical
structures defined across features and task by means
of the Cartesian product of graphs to induce a global
hierarchical group structure. A vectorization procedure
is then used to solve the resulting multi-task problem
with standard mono-task optimization algorithms de-
veloped for the overlapping group-lasso problem. Ex-
perimental results on simulated and real data demons-
trate the interest of the approach.

1 Introduction

Several studies have recently demonstrated the fea-
sibility of predicting the antibiotic resistance of a mi-
croorganism from its genome, where a good concor-
dance was observed between predicted and reference
resistance phenotypes, the later being determined ex-
perimentally by assessing their ability to develop in
presence of antiobiotic (e.g. Gordon et al., 2014). Our
work is motivated by these latter proofs of concept.
More precisely, starting from a large list of candidate
antibiotic resistance markers extracted from microor-
ganisms genomes, we aim to learn sparse predictive mo-
dels of their resistance profile, that is, their resistance
to several antibiotics. We target sparse models because
we expect the underlying biological mechanisms to in-
volve a limited number of genetic determinants, and

we want to retain some level of interpretability in the
models obtained. From the statistical learning perspec-
tive, we are facing a multi-task learning issue, where
the tasks —antibiotics in our case— can exhibit va-
rious degrees of correlation, since in practice we may
be interested in several groups of antibiotics targeting
distinct resistance mechanisms. Moreover, as it will be
described in Section 6, the candidate genetic markers
we consider can naturally be categorized in a hierar-
chy, organized for instance as genes and mutations wi-
thin genes. Taking into account both of these struc-
tures, across tasks, and markers, as prior knowledge for
learning may lead to better models. On the one hand,
multi-task learning has been shown to be relevant in va-
rious situations to consider dependency between tasks.
In particular, in cases where tasks present several de-
grees of similarity, Kim and Xing (2010) proposed an
approach to leverage a hierarchical structure encoding
the similarity between tasks to learn sparse multi-task
models. The method is based on a specific group-lasso
penalty involving tree-structured overlapping groups,
and can be seen as an extension of a common multi-task
approach consisting in learning jointly several models
sharing the same support (Obozinski et al., 2008). On
the other hand, considering the categorization of the
features can lead to a principled strategy to include
features in the model, that can be beneficial in terms
of performance and interpretability (Zhao et al., 2009;
Jenatton and Mairal, 2010; Jenatton et al., 2011).

We propose in this work to take into account both
structures to define a joint regularizer. By doing so, we
aim to impose a hierarchical constraint on the support
of each model, while maintaining the flexibility of the
structured multi-task approach. We introduce for this
purpose a new group-lasso regularizer explicitly combi-
ning the input and output hierarchical structures, and

1

propose a simple vectorization procedure allowing to
cast this multi-task problem into a mono-task one. Ex-
perimental results on simulated and real data demons-
trate the interest of the approach.

2 Background on tree-structured

group lasso

In this section, we introduce the notations that will
be used throughout the document and provide some
background about the tree-structured group-lasso pe-
nalty, and its application to structured variable selec-
tion and to multi-task learning.

2.1 Notation

The notation are given for any (m, p) 2 N2. For any
vector w 2 Rp, the i-th component of w is denoted
by w

i

, and for any q � 1, kwk
q

= (
P

p

i=1 |wi

|q)1/q de-
notes the `

q

-norm of w. For any matrix M 2 Rm⇥p

and any pair of groups (g, h) ✓ [1,m] ⇥ [1, p] we de-
note the sub-matrix M

g,h

= [M
i,j

](i,j)2g⇥h

. This no-
tation extends to any set c of couples of indices :
M

c

= [M
i,j

](i,j)2c

. Using a dot in this notation means
that the corresponding matrix dimension is not sub-
sampled, i.e. M

g,· = [M
i,j

](i,j)2g⇥[1,p]. This notation
extends to vectors w

g

= [w
i

]|
i2g

. The set of vertices
and edges of a tree T are denoted as V(T) and E(T),
respectively.

2.2 Tree-structured group lasso for

structured variable selection

We first consider a mono-task setting where we want
to learn a linear model, defined by a vector w 2 Rp,
from observations (xi

, y

i) 2 Rp ⇥ Y, for i = 1, ..., n,
where Y = R in a regression setting and Y = {+1,�1}
for binary classification. The p input features are as-
sumed to be organized in a directed rooted tree T :
each feature is affected to a single node of the tree,
which can be either an internal or a leaf node. For each
node v 2 V(T) we denote F(v) ✓ [1, · · · , p] its set of
affected features. {F(v)}

v2V(T) is then a partition of
[1, . . . , p]. Each node v of the tree T induces a group
g

v

defined as the set of features affected to v and its
descendants. Letting D(v) be the set of children of the
node v 2 V(T), the group g

v

is formally defined as :

g

v

= F(v) [
8
<

:
[

u2D(v)

g

u

9
=

; (1)

This procedure therefore defines a hierarchical and
overlapping set of groups, a group defined at a given
node of the tree —except the root— being included in
the groups of its ancestors, which can then be used to
define a group-lasso penalty

⌦I(w) =
X

v2V(T)

⌘

v

||w
gv ||q. (2)

The parameter ⌘
v

allows to control the penalization of
the group g

v

and q is usually set to 2 or to +1, (Zhao
et al., 2009; Jenatton et al., 2011).

The group-lasso penalty has the effect of setting to
zero entire groups of variables, and the hierarchical de-
finition of the groups leads to the following effect : a
group can only be selected provided that all its ances-
tors are selected as well, or, equivalently, any group is
set to zero together with its descendants. As a result,
this penalty imposes a hierarchical constraint on the
support of the model : if variables are affected to inter-
nal nodes of the tree, they enter the model whenever
one of their descendants is selected.

Remark. This hierarchical group structure extends

straightforwardly to a forest of trees. It only requires

to connect all the roots to a newly added – global – root

with no affected features and a weight set to zero.

2.3 Tree-structured group lasso for

multi-task learning

In a multi-task setting, we want to learn T linear
models, defined by vectors w1, ...,wT

2 Rp, using
multi-task observations (xi

, {yi1, ..., yi
T

}) 2 Rp⇥YT , for
i = 1, ..., n. An early approach to learn sparse multi-
task models defined the following penalty :

⌦S(W) =
pX

j=1

||W
j,·||q, (3)

where W = [w1, ...,wT

] is a p⇥T matrix in which each
column corresponds to a model (Tropp, 2006; Obo-
zinski et al., 2008). This penalty induces sparsity on
W at the row level, hence has the effect of grouping
features across tasks : whenever a feature is selected,
it is selected simultaneously for all models at the same
time. While this is a natural consideration for strongly
related tasks, it may not be appropriate to jointly learn
tasks exhibiting various degrees of similarity. In such a
case, indeed, it may be expected to select globally more
features than required individually for each task. Kim
and Xing (2010) proposed to extend this approach by

2

considering a hierarchical structure reflecting the de-
gree of correlation between tasks. A hierarchical group-
lasso penalty is then defined in the same manner as in
the previous section, and the global l

q

penalty defined
at the row level in (3) is replaced by the corresponding
group-lasso penalty :

⌦O(W) =
pX

j=1

X

v2V(T)

⌘

v

||W
j,gv ||q. (4)

Each feature is therefore penalized according to this
group-lasso penalty, defined across tasks, which has the
effect of inducing sparsity also within rows of W. A
feature is therefore not systematically introduced in all
models, which allows to control the inclusion of a given
feature in multiple models, according to the relatedness
of the corresponding tasks. Strongly related tasks can
therefore be enforced to share a large fraction of their
supports, while allowing them to maintain their own
specificity. Conversely, tasks showing a lesser level of
correlation can still be learned jointly, with a lower
incentive to share common variables. The definition of
the weights ⌘

v

is critical in this respect, and will be
further discussed in Section 4.3.

3 A joint input/output regulari-

zation method

The problem of combining input and output struc-
ture has been addressed by Lee and Xing (2012) and
Chen et al. (2012) who proposed joint regularizers de-
fined as the sum of input and output regularizers. In
this section, we propose an alternative definition that
combines the input and output structures into a global
one by means of the Cartesian product of graphs. Since
this construction takes into account the coupling effect
between the input and output structures, we shall re-
fer to it as the coupled input/output tree-structured
group lasso regularization, as opposed to the decou-

pled approaches proposed by Lee and Xing (2012) and
Chen et al. (2012). The two following sections respec-
tively define this coupled approach and point out its
advantages with respect to the decoupled one.

3.1 Definition

Given two hierarchical structures TI and TO res-
pectively defined across features and tasks, toge-
ther with their associated sets of groups {g

u

}
u2V(TI),

{g
v

}
v2V(TO) defined according to (1) and correspon-

ding weights {⌘
u

}
u2V(TI), {⌘v}v2V(TO), we define the

□ =

1

2

3

4

a b
2

3

4

1

2

3

4

1

a

a

a

a

b

b

b

b∅

∅

∅

Figure 1: Cartesian product of tree. Each feature –
integer– and task –letter– is associated to a node of
the input and output tree structures, respectively. The
DAG resulting from their Cartesian product is shown
on the right.

coupled input/output tree-structured regularizer as :

⌦I⇤O(W) =
X

u2V(TI)

X

v2V(TO)

⌘

u

⌘

v

kW
gu,gvkq. (5)

This overlapping group-lasso regularizer involves
|V(TI)|⇥|V(TO)| groups, each group of the input struc-
ture defining as many groups as the output structure
contains. This set of groups can be embedded in a
unique hierarchical structure based on the Cartesian
product of the input and output trees, as we now des-
cribe.

Definition 1 (Product graph of hierarchical-tree
structures). Given two trees TI and TO, we define
their Cartesian product TI⇤TO following the usual
definition in which V(TI⇤TO) = V(TI) ⇥ V(TO) is
the set product of V(TI) and V(TO), and two vertices
(u, v), (u0

, v

0) 2 E(TI⇤TO) are connected if either u =
u

0 and (v, v0) 2 E(TO), or v = v

0 and (u, u0) 2 E(TI).
For a given vertex w = (u, v) 2 V(TI⇤TO), we define
its weight ⌘

w

as ⌘

u

⇥ ⌘

v

, and its set of associated fea-
tures F((u, v)) ✓ [1, · · · , p]⇥ [1, · · · , T] as F(u)⇥F(v).

Definition 1 is illustrated in Figure 1. The Carte-
sian product of two trees is a Directed Acyclic Graphs
(DAG). A hierarchical group structure on TI⇤TO can
therefore be defined according to (1). We can now state
the following result, whose proof is post-poned to Ap-
pendix A.

Proposition 1. Let TI and TO be two trees and

TI⇤TO their Cartesian product according to Definition

1. Let {g
u

}
u2V(TI), {g

v

}
v2V(TO) and {g

w

}
w2V(TI⇤TO)

be their hierarchical sets of groups defined according to

(1). Then, for any w = (u, v) 2 V(TI⇤TO), we have

g(u,v) = g

u

⇥ g

v

.

With this property in hand, we can finally state the
following result.

3

Proposition 2. The regularization defined in (5) is

equivalent to a hierarchical group-lasso regularization

on groups defined on the product graph TI⇤TO :

⌦I⇤O(W) =
X

u2V(TI)

X

v2V(TO)

⌘

u

⌘

v

kW
gu,gvkq (6)

=
X

w2V(TI⇤TO)

⌘

w

kW
gwkq. (7)

Démonstration. This result follows directly from Pro-
position 1 by noting that the set of vertices of
V(TI⇤TO) is equal to V(TI) ⇥ V(TO), hence that the
terms of the double sum over V(TI) and V(TO) can be
evaluated by summing over V(TI⇤TO). The result is
obtained by the definition of ⌘

w

as ⌘

u

⇥ ⌘

v

.

The following section discusses the effects of the pro-
posed regularization with respect to that introduced in
Lee and Xing (2012).

3.2 Benefits

As mentioned previously, Lee and Xing (2012)
and Chen et al. (2012) proposed decoupled joint in-
put/output regularizers defined as the sum of input and
output regularizers. In particular, the definition consi-
dered in Lee and Xing (2012) is based on a overlapping
group-lasso penalty hence bears strong similarity with
the one proposed in the previous section. Using the
notations introduced previously, it writes as :

⌦I+O(W) =
pX

i=1

X

v2V(TO)

⌘

v

||W
i,gv ||q

+
TX

j=1

X

u2V(TI)

⌘

u

||W
gu,j ||q (8)

This construction has a very intuitive interpretation :
it consists in repeating the output group structure for
each input variable, on the one hand, and in repea-
ting the input group structure for each task on the
other. It is illustrated in Figure 2 using the same input
and output tree structures considered to illustrate the
product-graph construction.

Interestingly, we can note several differences, high-
lighted in Figure 2, between the proposed coupled regu-
larization (5) and the decoupled one (8). Indeed, a clo-
ser look at the nature of the groups induced highlights
the following disadvantages of the decoupled strategy :

Redundant groups : groups associated to leaf
nodes of each tree are repeated. They therefore enter
twice the group-lasso definition, which adds an unne-
cessary computational complexity if not properly taken

Figure 2: Comparison of the groups generated by the
coupled —left— and decoupled —right— regulariza-
tions, resulting from the same input and output trees.

into account.
Hierarchical and group constraints not ensu-
red : the output —resp. input— group structure is re-
peated for variables that are affected to internal nodes
of the input —resp. output— structure. As a result,
the hierarchical constraint on the support definition
is not enforced anymore : a group corresponding to an
internal node can be turned off without necessarily tur-
ning off its descendants. Likewise, if several variables
are affected to the same group, some can be set to zero
without turning off the entire group.
Missing coupling effects : finally, each node in the
coupled structure generates a group across tasks and
features. In particular, the group defined as the entire
set of input and output variables, resulting from the
coupling of the two root nodes, is not included in the
decoupled construction.

Remark. Several structured-sparsity problems can be

seen as special cases of the coupled formulation. For

instance the lasso, the simultaneous sparse coding

Tropp (2006), the hierarchical sparse coding Jenatton

et al. (2011) and the tree-guided group-lasso Kim and

Xing (2010) can be obtained by using a trivial flat

structure, defined as a collection of isolated nodes, when

either tasks or features are unstructured.

4 Implementation

From a training set of multi-task observations
(xi

, {yi1, ..., yi
T

}) 2 Rp ⇥ YT , for i = 1, ..., n, the joint
regularizer introduced in Section 3 can be used to learn
multi-task models via the general formulation :

W

? = argmin
W2Rp⇥T

nX

i=1

TX

t=1

l(yi
t

,w

|
t

x

i) + �⌦I⇤O(W), (9)

4

where l is a loss function quantifying the divergence
between the prediction w

|
t

x

i and the observation y

i

t

,
and � is a regularization parameter controlling the
trade-off between data-fitting and regularization terms.
In this section we discuss implementation issues. We
first introduce a simple vectorization procedure allo-
wing to cast the multi-task problem into a mono-task
one. We then discuss the choice of the norm to consi-
der for the group-lasso penalty, and present the output
groups weighting strategy.

4.1 A vectorization procedure

We now present a procedure to handle the minimi-
zation problem with this joint input/output regula-
rization. The base idea is to construct an equivalent
vectorized version of the problem, so that its resolu-
tion can be straightforwardly handled using standard
proximal methods. In order to construct the equiva-
lent vectorized problem, we resort to the vectorizing
operator "vec" and the Kronecker product ⌦, allowing,
for three matrices A,B,C, to write the following rela-
tion(Petersen et al., 2006) :

vec(ABC) = (C| ⌦A) vec(B) (10)

We now reformulate Problem (9) using the separa-
bility of the loss function over each sample i = 1, . . . , n
and task t = 1, . . . , T . Defining X = [x

i

]|
i=1,...,n and

Y = [y
t

]
t=1,...,T , with y

t

= [yt
i

]
i=1,...,n, we can write (9)

as :

W

? = argmin
W2Rp⇥T

nX

i=1

TX

t=1

l([Y]
i,t

, [XW]
i,t

) + �⌦I⇤O(W)

= argmin
W2Rp⇥T

nTX

i=1

l([vec(Y)]
i

, [(Id
T

⌦X) vec(W)]
i

)

+ �⌦I⇤O(W).

We then introduce the following function :

⌦vec(w) =
X

v2TI

X

t2TO

⌘

v

⌘

t

k[w
i+(j�1)p]

|
(i,j)2gv⇥gt

k
q

One can easily check using the definition of vectori-
zing operator that we have ⌦I⇤O(W) = ⌦vec(vec(W)).
As a result, the multi-task problem of interest (9) can
be stated as an higher dimensional mono-task problem
where the regularization has been modified to keep the
cross-variable and cross-task structures :

w

? = argmin
w2RpT

nTX

i=1

l([vec(Y)]
i

, [(Id
T

⌦X)w]
i

)

+ �⌦vec(w), (11)

Remark. Note tat the manipulation of missing values

is straightforward in this formulation, as it only re-

quires to remove them from vec(Y) and the correspon-

ding lines in Id

T

⌦X.

4.2 Choice of the group-lasso norm

Problem (11) is a special instance of group-lasso with
overlapping groups. This problem is actually not easy
to solve since the proximal operator of the regulariza-
tion function has no analytical solution. Ad hoc algo-
rithms therefore have to be deployed, that depend on
the choice of q and on the group structure. Fortuna-
tely, an efficient polynomial time algorithm has been
proposed by Mairal et al. (2011) to solve the overlap-
ping group lasso for the `1-norm when the groups are
structured in a DAG. In this study, we therefore used
the implementation this network-flow algorithm, which
is available in the SPAMS toolbox.

4.3 Defining weights

To obtain a coherent group structure in the solution
the weighting strategy is critical. Regarding the output
structure, Kim and Xing (2010) proposed a data-driven
strategy allowing to set the weights of the nodes so that
each task is regularized equally. In this method, the
output structure is built from the data by applying a
hierarchical agglomerative clustering algorithm to the
observation matrix Y. The result of this operation is
a binary tree in which each internal node splits the
tasks into two subsets. A pair of features s

v

and t

v

is
then assigned to each node v depending on its height in
the tree. The value s

v

quantifies how its two children
subsets should be set to zero separately in the support
and t

v

, defined as 1�s

v

, quantifies how they should be
kept together. The group weights are then defined as
⌘

v

= t

v

⇧
v

02Ancestors(v)sv, and it can then be shown that
for each leaf l of the tree, that is, for each task of the
problem, we have

P
v2Ancestors(l)[{l} ⌘v = 1, meaning

that each task is penalized equally irrespective of its
position in the tree.

Kim and Xing set the s
v

value of each node according
to the normalized height of the node, leaf nodes ha-
ving a height equal to zero. High nodes in the tree will
therefore tend to treat their two children groups inde-
pendently, hence have a lesser incentive to active them
simultaneously. We refer to this strategy as absolute-

height weighting and propose here a simple relative-

height weighting alternative intended to better handle
cases where many tasks can show very similar level of
correlation, i.e. when nodes in the tree have very si-

5

Figure 3: Comparing the two weighting strategy on a hierarchical clustering on 10 tasks. For each node of the
tree the height is given prefixed with H —except for the leaves which have 0 height—, the relative-height weight
in the bottom-red rectangle and the absolute weight in the top-blue rectangle.

milar height. In this approach, we set the t

v

value of
each internal node as the difference between the height
of its parent and its own height, and set it to 0 for
the root and to 1 for the leaves. Figure 3 illustrates the
weights obtained by the two strategies in a 10-task pro-
blem with two groups of 5 correlated tasks. The simple
intuition that large weights tend to strongly group no-
des’ children may help to comprehend Figure 3. We
see indeed in Figure 3 that the relative strategy tends
to set bigger weights only at the top node of each of
the two tasks clusters, here at height 0.42 and 0.326,
which is precisely the expected behavior according to
the above intuition. In contrast, we see that the nodes
between the leaf nodes and these two nodes are given
very small weights, and in particular smaller weights
than the absolute-height strategy, meaning that they
practically have no effect on the regularization. Finally,
we note that the relative-height strategy regularizes
tasks more homogeneously within each of the 5-task
clusters, which also seems natural. As a final remark,
we note that node weights could easily be used to devise
a pruning strategy meant to simplify the tree-structure
by removing nodes with weights smaller than a given
threshold. Figure 3 suggests that such a pruning would
better gather the structure of the tree if it was based
on the relative height weights.

5 Simulation Experiments

We present here some simulation experiments to
show the interest of our approach. We aim to evaluate
the performance of the approach in terms of support
recovery and denoising performance in the context of
least-square regression. Our synthetic data is construc-
ted as follows. Each column of the input matrix X is
drawn from the centered Normal distribution N (0, I

n

)
and normalized. The target structured and sparse ma-
trix W that we seek to recover is constructed from
the input tree T

i

and output tree T
o

, whose defini-

tions are given afterward. We first draw its coefficients
as [W]

i,j

⇠ 1 + N (0, 1
2). We then draw random pairs

of nodes (u, v) 2 V(T
i

) ⇥ V(T
o

) and set the variables
in g

u

⇥ g

v

to 0. This is repeated until less than 10%
of non-zero coefficients are remaining. We also ensure
that every column of W has at least 1 non-zero coef-
ficient. The matrix Y is then set as Y = XW, and
each column of Y is finally corrupted some Gaussian
noise to reach a given SNR level. We consider ba-
lanced trees as input and output hierarchical struc-
tures. A balanced tree can be defined completely by
two lists : (i) a first list C that gives the number of
children for each depth in the tree, (ii) a second list V

that gives the number of (consecutive) variables that
are affected to each node at a given depth. The in-
put tree is defined as T

i

: {C = [4, 3, 0], V = [0, 5, 5]},
meaning that its root has 4 children whom have 3
children each. For every child v of the root we have
|F(v) = 5|, and for each grand child of the root w

we have |F(w)| = 5. The output-tree is defined as
T
o

: {C = [4, 3, 0], V = [0, 0, 5]}. The problem hence
involves 80 features and 60 tasks. The input tree is
assumed to be known for the estimation of W, as it
represents the knowledge we can have about our fea-
tures. Its weights are set to 1. The output tree, on the
other hand, is obtained from Y using the clustering
and weighting method detailed in Section 4.3.

The support recovery performance are measured by
ROC curves which are shown in Figure 4 for two SNR
values. Five regularizations strategies are considered :
the proposed Coupled one, resulting from the Cartesian
product of the input and output trees ; the Decoupled
one that is the sum the the input-tree and output-tree
regularizations ; the Input and Output regularization,
taking into account only the input or the output tree
structure and finally the Lasso that does not consider
any structure. We observe that considering solely the
output structure offers a marginal gain over the Lasso
in terms of support recovery. The input structure, on

6

Figure 4: ROC curves of the support recovery, each
marker is a given value of �. The scatterplot for each
regularization have been smoothed via a LOWESS re-
gression (Cleveland, 1981). Note that the scale of the
x-axis is linear for x 10�2 and logarithmic afterwards
for better readability.

Figure 5: MSE values obtained two SNR values.

the other hand, markedly improves the results, even
considered alone. Considering in addition the estima-
ted output structure is beneficial only for the coupled
regularization, and the improvement increases with the
noise level.

To assess the denoising performance of the various
regularization strategies, we repeat 10 times a process
in which we generate a training dataset as described
above, compute the model supports over a logarith-
mic grid of � values, perform a debiasing step on the
resulting performance, and assess the predictive perfor-
mance on independent samples, simulated by the same
model. We then extract, for each repetition and each
method, the smallest MSE obtained across � values
and show the resulting distributions in Figure 5. We

note that the coupled approach also gives better perfor-
mance for the denoising task. The decoupled approach
shows slightly better performance than the input only
strategy for a high noise level, which may be due to a
better support recovery of this method for specificity
values close to one in Figure 4 for SNR=2. Further ex-
periments shown in Supplementary Materials indicate
that the coupled approach can further benefit from the
knowledge of the actual output tree structure, highligh-
ting the fact that estimating it accurately is important.

6 Experimental Evaluation

In this section we evaluate the relevance of the ap-
proach on two real datasets involving the bacterial spe-
cies Pseudomonas aeruginosa, an important human pa-
thogen involved, in particular, in hospital-acquired in-
fections. The first dataset is public and is described in
Kos et al. (2015). It involves 390 strains characterized
for three antibiotics, Amikacin, Levofloxacin and Mero-
penem, belonging to three distinct families. The second
dataset involves 282 strains characterized for three an-
tibiotics, Meropenem, Doripenem and Imipenem, be-
longing to the same family —the class of penems �-
lactams. The level of correlation between tasks is the-
refore higher in the latter dataset. In the first (resp. se-
cond) database, each strain is characterized by a set of
4579 (resp. 4564) features related to 97 (resp. 95) genes
involved in antibiotic resistance. These features encode
the presence of absence or predefined genetic determi-
nants. Most of them —4516 (resp. 4510)— correspond
to the presence of a specific mutation within one of
these genes, and the 63 (resp. 54) remaining ones cor-
respond to the presence of some of these genes —the 34
(resp. 41) other genes being present in all the strains.
These features are organized in a two-level hierarchy
in which the first level corresponds to the genes. For
the first dataset for instance, the root node of the tree
has 97 children corresponding each to one of the genes
involved in the strains characterization. Whenever a
feature explicitly encodes the presence or absence of a
gene —that is, for 63 of the 97 genes—, it is affected to
its corresponding node. The second level corresponds
to the within-gene genetic variants : each node of the
first level has a various number of children equal to the
number of mutations that may be observed within the
corresponding gene. Finally, the output structure and
associated groups weights are obtained by applying an
agglomerative clustering operation on the matrix of re-
sistance phenotypes, as described in Section 4.3. Note
however that we consider a continuous measure of bac-

7

terial resistance, the Minimum Inhibitory Concentra-
tion (MIC), corresponding to the smallest antibiotic
concentration required to inhibit the growth of the mi-
croorganism in an in vitro experiment, to build this
hierarchical structure. Note also that we focus on dis-
criminating between resistant and susceptible strains
and discard strains of intermediate resistance.

To evaluate the predictive performance of our ap-
proach, we proceed by cross-validation. We consider a
10-fold cross-validation process where the regulariza-
tion parameter is chosen, within each fold, by means of
an internal 10-fold cross-validation process, as the value
maximizing the classification accuracy over a grid of 60
candidate values. This process is repeated 5 times and
is done on a task by task basis in order to stratify the
folds according to the relative proportions of resistant
and susceptible strains, that can vary from one anti-
biotic to the other. Results are shown in Tables 1 and
2, in which we compare our approach to the four alter-
native strategies described in the previous section, and
to the simultaneous sparse-coding approach that forces
the tasks to share the same support (Tropp, 2006).

The main conclusion that can be drawn from these
tables is that the various approaches considered exhibit
in general comparable performances. On the Kos data-
set, in particular, all strategies provide similar perfor-
mances for the Amikacin and Levofloxacin antibiotics.
For the last drug, Meropenem, considering the input
structure, either alone or in combination with the out-
put structure, is beneficial and allows to improve the
accuracy by up to 2 points. Interestingly, we note that
the performances obtained on this dataset match those
recently reported by Drouin et al. (2016) using a to-
tally different approach, which therefore validates the
use of penalized regression models in this context, as
well as our list of candidate antibiotic-related genes.
On the Penems dataset, the input structure also seems
to have a positive impact on the classification perfor-
mance. Albeit marginal (less than 1 point per antibiotic
in average), the gain is systematic for the three anti-
biotics. Approaches considering the output structure
alone show in general lesser performance than the un-
structured baseline. Consequently, joint input/output
methods do not improve over the approach based on
the input structure only.

We note however that although the various strate-
gies lead to comparable classification performance, the
nature of the supports obtained can be quite different.
This is illustrated in Figure 6 that shows, for each re-
gularizer, the number of active features and genes as a
function of the regularization parameter. These num-
bers were computed on the Kos dataset, and were ave-

raged across tasks. Note that the grid of regularization
parameter is sorted in a decreasing order, and is not
strictly the same across methods. It is indeed defined
adaptively, starting from the minimum value of � lea-
ding to a non null solution. We note indeed that in
terms of features, the unstructured and output strate-
gies lead to the smallest supports. As can be expec-
ted, the strategies taking into account the input struc-
ture lead to larger supports, due to the grouping ef-
fect among mutations related to a given gene. The size
of the supports provided by the coupled input/output
strategy is very close to that provided by the input stra-
tegy, while the decoupled input/output strategy shows
slightly smaller supports, probably due to the fact that
the hierarchical constraint on the nature of the support
is not maintained anymore. The simultaneous sparse
coding strategy shows an in-between behavior. Consi-
dering the number of genes activated in the supports
reveals that the strategies taking into account the input
structure select fewer genes than the other approaches.
For practical applications, this behavior can be interes-
ting to design targeted tests focusing on a more limited
number of genes. Conversely, each of the unstructured,
output and simultaneous strategies seems to activate a
comparable number of features and genes. We note fi-
nally that the simultaneous sparse-coding strategy sys-
tematically activates more genes, which is probably due
to the fact that the three antibiotics involved in the Kos
dataset have different mechanisms of actions, hence in-
volve different resistance mechanisms. As a result, since
the simultaneous strategy leads to a common support
across antibiotics, it is much larger than necessary for
each antibiotic taken individually. The same observa-
tions can be made on the Penems dataset. In this case,
however, the gap between the simultaneous and the
other strategies in terms of genes activated is lesser,
reflecting the fact that the tasks are more correlated in
this dataset.

7 Discussion

We have introduced a new multi-task regularizer
combining hierarchical structures defined across fea-
tures and tasks, which allows to perform structured va-
riable selection when tasks can exhibit various degrees
of similarity. We have demonstrated the relevance of
this approach by simulation studies. Experiments car-
ried out on two real datasets related to microbial anti-
biotic resistance lead to mixed results, suggesting that
this application does not benefit from multi-task lear-
ning. Further experiments involving a greater number

8

Unstructured Input Simultaneous Output Decoupled Coupled
Amikacin 87.7 (±0.5) 87.5 (±0.6) 85.7 (±0.6) 87.7 (±0.5) 87.2 (±0.6) 87.5 (±0.6)

Levofloxacin 91.6 (±0.4) 91.7 (±0.5) 91.5 (±0.5) 91.6 (±0.5) 91.7 (±0.8) 91.5 (±0.5)
Meropenem 72.0 (±1.1) 73.4 (±1.5) 73.6 (±1.9) 71.7 (±0.9) 73.6 (±0.9) 74.2 (±1.4)

Average 83.8 (±0.5) 84.2 (±0.7) 83.6 (±0.6) 83.7 (±0.6) 84.1 (±0.4) 84.4 (±0.7)

Table 1: Kos study. Average accuracies observed across repetitions of the cross-validation process, together
with their standard deviation.

Unstructured Input Simultaneous Output Decoupled Coupled
Doripenem 85.5 (±0.5) 85.9 (±0.6) 84.5 (±1.0) 83.6 (±1.2) 85.4 (±0.6) 85.2 (±0.6)
Imipenem 73.9 (±1.3) 75.5 (±1.4) 72.7 (±0.7) 73.4 (±1.0) 74.7 (±0.7) 74.9 (±0.8)

Meropenem 80.2 (±0.7) 81.0 (±0.6) 81.8 (±1.1) 80.8 (±1.0) 81.0 (±1.1) 80.9 (±0.6)
Average 79.9 (±0.5) 80.8 (±0.6) 79.7 (±0.8) 79.3 (±0.7) 80.4 (±0.4) 80.3 (±0.5)

Table 2: Penems study. Average accuracies observed across repetitions of the cross-validation process, together
with their standard deviation.

 average # features vs lambda

lambda index

0 10 20 30 40 50 60

1

2

5

10

20

50

100

200
flat
input
simultaneous
output
input_output_d
input_output_c

average # genes vs lambda

lambda index

0 10 20 30 40 50 60

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Figure 6: Nature of the supports identified. Left and
right : number of active features and genes vs regulari-
zation parameter. Note that the grid of regularization
parameter is sorted in a decreasing order.

of strains and antibiotics will be necessary to confirm
the results obtained in this small scale study. This new
regularizer may nevertheless be useful for other appli-
cations in different domains.

We see several perspectives to this work. From the
methodological standpoint, an extended empirical eva-
luation would be required to assess the merits of the
proposed output groups weighting strategy with res-
pect to the strategy proposed in Kim and Xing (2010).
We also note that we essentially chose the `1 norm for
the groups for computational reasons. The overlapping
`2-group lasso is indeed challenging for arbitrary hie-
rarchical graph structures, but it would be interesting
to investigate whether we can exploit the particular
structure of the Cartesian product of trees to devise
efficient algorithms, as it is done for trees, or if we
can benefit from inexact proximal methods (Schmidt

et al., 2011; Machart et al., 2012). Regarding the issue
of predicting antibiotic resistance from genotypes, seve-
ral natural extensions of this work could be envisioned.
We first note that finer structures could be considered
to categorize the genomic features. One may for ins-
tance consider the positions of mutations within the
genes sequences to better account for linkage disequili-
brium, which can be expected to induce local correla-
tion patterns. Moreover, although we have focused in
this study on a categorical resistant/susceptible phe-
notype, the primary measure of antibiotic resistance
is continuous. It is indeed defined as the smallest an-
tibiotic concentration required to inhibit the growth
of the microorganism in an in vitro experiment. Its
characterization process usually proceeding by succes-
sive antibiotic dilutions, leading actually to a pseudo-
continuous or ordinal measure. Our future work will
notably aim to carry out this regularization approach
in the framework of penalized ordinal regression.

A Proof of Proposition 1

To prove g(u,v) = g

u

⇥ g

v

for any vertex (u, v) 2
V(TI⇤TO), we proceed by recursion on the height h

of the vertex. The height is defined as the length of
the smallest directed path separating the considered
vertex to any vertex with no outgoing edges. For h = 0
we apply the hierarchical definition of group (1) and
obtain the desire relation as vertex of height 0 has no
child :

g(u,v) = F((u, v)) = F(u)⇥ F(v) = g

u

⇥ g

v

We now assume that the property is true for h = n,
and consider a vertex (u, v) of height n + 1, then (1)

9

gives :

g(u,v) = F(u)⇥ F(v) [
8
<

:
[

w2D((u,v))

g

w

9
=

; (12)

From Definition 1 we obtain :
[

w2D((u,v))

g

w

=
[

u

02D(u)

g(u0
,v) [

[

v

02D(v)

g(u,v0),

applying the recursion we can simplify it into :

[

w2D((u,v))

g

w

=

8
<

:
[

u

02D(u)

g

u

0

9
=

;⇥ g

v

[g

u

⇥
8
<

:
[

v

02D(v)

g

v

0

9
=

; .

Since {F(v)}
v2TI and {F(v)}

v2TO are partitions of
[1, . . . , p] and [1, . . . , T], respectively, we have :

[

w2D((u,v))

g

w

= {g
u

\ F(u)}⇥ g

v

[g

u

⇥ {g
v

\ F(v)}

= g

u

⇥ g

v

\ F(u)⇥ F(v) (13)

Finally from (12) and (13) we obtain the desired re-
sult.

Références

X. Chen, X. Shi, X. Xu, Z. Wang, R. Mills, C. Lee,
and J. Xu. A two-graph guided multi-task lasso ap-
proach for eqtl mapping. In International Conference

on Artificial Intelligence and Statistics (AISTATS),

2012., pages 208–217, 2012.

W. S. Cleveland. LOWESS : A Program for Smoo-
thing Scatterplots by Robust Locally Weighted Re-
gression. Am. Stat., 35(1) :829–836, 1981.

A. Drouin, G. Sébastien, M. Déraspe, M. Marchand,
M. Tyers, V. G. Loo, A.-M. Bourgault, F. Laviolette,
and J. Corbeil. bioRxiv, 2016.

N. C. Gordon, J. R. Price, K. Cole, R. a. M. Everitt,
F. Finney, A. M. Kearns, B. Pichon, B. Young, D. J.
Wilson, M. J. Llewelyn, J. Paul, T. E. A. Peto, D. W.
Crook, A. S. Walker, and G. T. Prediction of Staphy-

lococcus aureus Antimicrobial Resistance by Whole-
Genome Sequencing. Journal of Clinical Microbio-

logy, 52(4) :1182–1191, 2014.

R. Jenatton and J. Mairal. Proximal methods for
sparse hierarchical dictionary learning. In Interna-

tional Conference on Machine Learning, 2010.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach.
Proximal methods for hierarchical sparse coding. J.

Mach. Learn. Res., 12 :2297–2334, July 2011. ISSN
1532-4435.

S. Kim and E. P. Xing. Tree-guided group lasso for
multi-task regression with structured sparsity. In In-

ternational Conference on Machine Learning, pages
543–550, 2010.

V. N. Kos, M. Déraspe, R. E. McLaughlin, J. D.
Whiteaker, P. H. Roy, R. A. Alm, J. Corbeil, and
H. Gardner. The Resistome of Pseudomonas aeru-

ginosa in Relationship to Phenotypic Susceptibility.
Antimicrobial Agents and Chemotherapy, 59(1) :427–
436, 2015.

S. Lee and E. Xing. Leveraging input and output
structures for joint mapping of epistatic and margi-
nal eQTLs. Bioinformatics, 28(12) :i137–i146, June
2012. ISSN 1367-4811. doi : 10.1093/bioinformatics/
bts227.

P. Machart, L. Baldassarre, and S. Anthoine. Opti-
mal Computational Trade-Off of Inexact Proximal
Methods. In Multi-Trade-offs Mach. Learn., 2012.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach.
Convex and network flow optimization for structured
sparsity. J. Mach. Learn. Res., 12 :2681–2720, Nov.
2011. ISSN 1532-4435.

G. Obozinski, M. J. Wainwright, and M. I. Jordan.
High-dimensional support union recovery in multiva-
riate regression. In Advances in Neural Information

Processing Systems, pages 1217–1224, 2008.

K. B. Petersen, M. S. Pedersen, J. Larsen, K. Strim-
mer, L. Christiansen, K. Hansen, L. He, L. Thibaut,
M. Barão, S. Hattinger, V. Sima, and W. The. The
matrix cookbook. Technical report, 2006.

M. Schmidt, N. L. Roux, and F. Bach. Convergence
Rates of Inexact Proximal-Gradient Methods for
Convex Optimization. In Adv. Neural Inf. Process.

Syst., number 2, pages 1–9, 2011.

J. A. Tropp. Algorithms for simultaneous sparse ap-
proximation. Part II : Convex relaxation. Signal Pro-

cessing, 86(3) :589–602, Mar. 2006. ISSN 01651684.
doi : 10.1016/j.sigpro.2005.05.031.

P. Zhao, G. Rocha, and B. Yu. The composite ab-
solute penalties family for grouped and hierarchical
variable selection. The Annals of Statistics, 37(64) :
3468–3497, 2009.

10

	Introduction
	Background on tree-structured group lasso
	Notation
	Tree-structured group lasso for structured variable selection
	Tree-structured group lasso for multi-task learning

	A joint input/output regularization method
	Definition
	Benefits

	Implementation
	A vectorization procedure
	Choice of the group-lasso norm
	Defining weights

	Simulation Experiments
	Experimental Evaluation
	Discussion
	Proof of Proposition 1

