Skip to Main content Skip to Navigation
Journal articles

Applied iterative closest point algorithm to automated inspection of gear box tooth

Abstract : The development of a complete system of inspection and quality control of manufactured parts requires the coordination of a set of complex processes allowing data acquisition, their dimensional evaluation and their comparison with a reference model. By definition, the parts inspection is the comparison between measurement results and the theoretical surfaces definition in order to check the conformity after manufacturing phase. The automation of this function is currently based on alignment methods of measured points resulting from an acquisition process and these nominal surfaces, in a way that they ''fit best''. The distances between nominal surface and measured points (i.e. form defects) calculated after alignment stages are necessary for the correction of the manufacturing parameters (Henke, Summerhays, Baldwin, Cassou, & Brown, 1999). In this work, a method for automated control based on association of complex surfaces to a cloud points using the Iterative Closest Point (I.C.P.) algorithm for alignment stage is proposed. An industrial application concerning a tooth gear manufactured in our country's tractor engines is presented.
Document type :
Journal articles
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download

https://hal-amu.archives-ouvertes.fr/hal-01411162
Contributor : Administrateur Hal Amu <>
Submitted on : Wednesday, December 7, 2016 - 10:36:29 AM
Last modification on : Thursday, February 7, 2019 - 5:14:53 PM
Long-term archiving on: : Tuesday, March 21, 2017 - 1:14:47 PM

File

Linares_11_APPLIED_ITERATIVE_F...
Files produced by the author(s)

Identifiers

Collections

Citation

Salim Boukebbab, Hichem Bouchenitfa, Hamlaoui Boughouas, Jean-Marc Linares. Applied iterative closest point algorithm to automated inspection of gear box tooth. Computers and Industrial Engineering, Elsevier, 2007, 52, pp.162 - 173. ⟨10.1016/j.cie.2006.12.001⟩. ⟨hal-01411162⟩

Share

Metrics

Record views

141

Files downloads

512