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a b s t r a c t 
Currently, most measurement and geometrical verification processes are based on the characterization of distances or angles between geometrical 

elements. In a previous paper, a method was developed for the 

verification of ISO specifications using the statistical information included in a set of points. This method is 

based on the development of measurement sequences and hence a sequence of geometrical constructions. The main problem in this verification process is 

to propagate uncertainties. With a correct expression of a virtual gauge, it is possible to avoid this propagation; indeed by using virtual gauge 

manipulation, initial best-fitted surfaces are never touched. The aim of this paper is to present a new approach using this statistical information to 

describe the measured part and develop a virtual gauge system for verification. 

This will be done in two parts. The first part will focus on the statistical modelling of the measured surface; the second part will describe a verification 

method based on a virtual, i.e. numerical, gauge. 

1. Introduction 

well as product quality. Moreover, in the past few years, compa-

nies have increasingly turned to outsourcing on an international 

level. Thus, mastering the assembly and lifespan of a mechani-

cal system has become more and more complex. One of the most 

important parameters for this kind of problem is the inevitable 

geometric variation of a part when compared with its geometric 

specifications. These dispersions are due to the natural variability 

of the manufacturing process. At the present time, ISO geometric 

standards provide efficient concepts to specify parts. Thanks to cur-

rent standards, variations can be limited thus respecting functional 

requirements. These specifications determine a geometric zone in 

which all real surfaces of the part are acceptable. Standards also 

provide methods which describe procedures for verifying these 

specifications. However, with the progress made in manufacturing 

processes and increasing demands for quality, tolerance intervals in 

geometric specifications are continually shrinking. Tolerance inter-

vals are becoming near equals to the possibilities of the means of 

measurement. This situation has brought about an increase in the 
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uncertainties of measurement. To cut back on verification uncer- 
tainties, two methods are possible: improving the quality of the 

In a global industrial context, companies have to cope with measurement process or the part verification process. 
stiff competition not only concerning costs, but also in rapidity as Studies done on improving measurement processes have 

enabled researchers to create efficient methods of calibration and 

to compensate for geometric errors stemming from the means 

of measurement. But using these methods does not completely 

diminishmeasurement uncertainties. They do not take into account 

instantaneous random deviations or a form defect which cannot be 

compensated for. Newtechnologies, whetheroptical or mechanical, 

can noticeably increase the rapidity in acquiring a measurement. 

Increasing the number of points measured allows us to use more 

and more complex and more and more accurate surface featuring 

techniques. Added to the new generations of three-dimensional 

modellers, these techniques open up new possibilities such as: 

• best-fitting complex shapes, 
• using statistical tools like Bayesian inference, and 

• accurately estimating tangent surfaces. 

In addition to raw measurement uncertainties, the geometrical 

verification process amplifies the error bars of modelled surfaces. 

Nowadays, the typical method of geometric verification uses vecto-

rial calculation. It is based on distance determinations: point/point, 

point/line, and point/plane. The disadvantage of this kind of cal-

culation is the fact that uncertainties can be generated while 

creating geometrical constructions. With current calculation capa- 
bilities, it is possible to make calculations which are less penalising 
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Nomenclature 

a 
E 

E 

E E E 

−−→ 

E 

E 

E E E 
E E E 

v E 
E 

Nbp number of measured point 
prob(OM) probability of a point M to be inside the matter 

pa level of risk of a SMB 
P random vector representing mean estimated geo-

metric parameters 
Pi ith coordinate of the random vector P 

q(M) orthogonal projection of a point M 
r, s, t, ,  curvilinear coordinate 
r0, s0, y0, 0, 0     fixed curvilinear coordinate representing a 

given point of a surface 
R radius 
Sp,x, Sp,y, Sp,z     parametric equation of the surface S, respec-

tively, projected onto x, y, z 
E orientation vector of the random vector P 

vx, vy, vz     orientation parameter coordinates of P 

i 
∂P 

Greek letters 
˛, ˇ, w parameters of a plane with small displacement 

screw model 
w              likelihood function                 

standard deviation 
2 variance 
∂g

j  
partial derivative of the function gi in respect with 

Pj 
˝ vector space 

by replacing the usual geometrical construction with a virtual 

gauge. 
This paper proposes a verification process using virtual calibra-

tionwith a statistical criterion. The goal is to provide themetrologist 

with an indication of the risk he is taking when he claims that a 

part is geometrically standard. The novelty of this method is to 

include measurement uncertainties in the verification process. This 

indication must also make it possible to question the measure-

ment strategy used, the sampling strategy and the number of points 

probed. 
This paper is divided into two distinct parts. Thefirst partwill put 

forward a statistical modelling method of real surfaces. This model 

is presented in the form of a field of probability of the presence of 

matter (FPPM). It enables us to take any point in space and calculate 

the probability of its being within the boundaries of the object in 

question. 
The second part deals with a method of geometrical veri-

fication of a part using virtual gauges. Virtual gauges will be 
modelled by a metric tensor and, thanks to the FPPM, will enable 

E vector representing a point of ˝ 

ai ith coordinate of the vector a 
Cx, Cy, Cz     localization parameters of the random vector P 

d distance function 
e1, e2, e3     basis vectors of a coordinate system 
E first order statistical moment, i.e. mean value 

f probability density function (PDF) 
g any function 
gi ith value of the function g in the case of multidimen-

sional function 
H projected point 
J Jacobian operator 
ki order of the statistical moment 
Mi measured point i Fig. 1. Verification section. 

n parameter number 

us to have a geometrical check on the product using a statistical 

criterion. 

2. State of the art 

Geometrical verification using coordinate measuring machines 

(CMM) can be summed up in four different actions (Fig. 1): 

• Measuring the real part. 
• Determining the features of the real surfaces of the part. 

• Interpreting geometrical specifications. 
• Testing conformance. 

A great variety of research work has been carried out on the 

measurement of geometrical quantities as well as on verification. 

These studies cover many fields which can be organized into four 

groups: best-fitting methods, uncertainty calculations, tolerance 

zone descriptions, and conformance testing. Fig. 2 proposes differ-

ent channels of research for each group. 
In the first part of this paper, we will present different stud-

ies done in the fields concerning how to determine the features 

of measured surfaces as well as fields concerning how to estimate 

uncertainty. 

Fig. 2. Fields of geometrical verification with a CMM. 
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2.1. Best-fitting 

The data supplied by CMM is given in the form of point coordi-

nates. To estimate the surface of the real part, best-fitting must be 

carried out. Best-fitting is the operation in which a given feature 

representing the real surface is associated with a set of measured 

points. This association is completed by optimizing a criterion like 

least squares, infinite norm or likelihood functions. Since the begin-

ning of CMM use, research work has been done on numerous 

best- fitting methods [1–3]. In fact, the minimized function is never 

linear, but to simplify the optimization problem, the objective func-

tion is often linearized. A method based on a likelihood function 

proposes a non-linear optimization association [4]. Nevertheless, it 

is well known in measurement that the sampling of the real surface 

and hence best-fitting, imply that the estimation of the surface is 

provided with uncertainties. 

2.2. Uncertainties 

Research on uncertainty calculation for CMM can be organized 

into three classes: 

• Experimental measurement of gauge blocks: Different artefacts, 

user-defined parts or geometrical gauges can be used to calibrate 

and determine uncertainty in CMM [5,6]. 
• Simulations of the measurement process: The Monte Carlo Method 

is commonly used for simulating complex measurement pro-

cesses. It has thus been used as an alternative to treat the complex 

measurement of dimensions and to determine the probability 

distribution density of measured quantities numerically [7–9]. 
• The statistical approach: Least squares and extreme fits are used in 

CMM and a variety of researchers have developed several numer-

ical algorithms for three-dimensional data analysis. A statistical 

relationship method has been developed to determine the valid-

ity of the geometric model [10]. Thesameresearch group createda 

method to estimate the uncertainty of measurement on envelope 

surfaces [11]. Evaluating uncertainties in the vectorial tolerances 

using the least squares method has been proposed. The rotation 

and translation vectors of the surface were combined to form a 

homogeneous coordinate transformation matrix which, however, 

was approximated to the first order expansion [12]. A number of 

projects related to the study of a set of measured points have 

been carried out. Methods have been suggested to evaluate geo-

metric errors obtained on parts when the manufacturing process 

is known [13,14]. Finally, research has been done on estimating 

the measurement uncertainty of small circular features measured 
by CMM [15]. 

3. Modelling surfaces using random vectors 

Fig. 3. Point/vector descriptions of a plane. 

3.1. The “point, vector, parameter” model 

E 

E 

All geometric surfaces, which can be described in an equation, 

can be represented with a set of point/vectors and intrinsic param-

eters. This assembly of a point and one or more vectors allows 

locating and orienting the surface. The intrinsic parameters enable 

us to construct the surface. There are several solutions in modelling. 

They are based on sets of points and/or vectors representing the 

same surface (Fig. 3). 
However, statistical descriptions of a surface are more efficient 

if the number of parameters is reduced to the bare minimum (prin-

ciple of parsimony). Thus, the random vector modelling method is 

the one proposed in the table of “point/vector/scalar” modelling 

(Fig. 4). 
In the rest of the document, all the scalars in this modelling 

(point coordinates, coordinates of the vector(s) and parameters 

intrinsic to the model) will make up a vector shown as P. To illus-

trate this approach, let’s take the case of a cylinder (Fig. 5). The 

random vector of the cylinder is made up of a point, a vector and a 

radius. 
The random vector P used here is derived from a minimal ran-

dom vector which was used in best-fitting. 

3.2. Statistical best-fitting: vector expectation and the covariance 

matrix 

E 

The real surface to be estimated is made up of an infinite number 

of points. Statistically, the infinite number of points of the sur-

face produces a population to be characterized. The set of points 

evaluated can thus be considered as a statistical sampling of this 

population. Modelling by random vectors consists in estimating the 

first and second statistical moment of this vector, in other words, 

the mathematical expectation and the set of covariances in vector 

P. 

E 
3.2.1. The random vector 

A random vector P of n dimensions belonging to <n is the vec-

tor [P1, P2, . . . , Pn]
T
. Its components. Pi, are random variables. The 

random vector components are assumed to be continuous. The 

Studying the bibliography, we can assert that classic methods 

of geometrical verification of products do not allow us to claim 

without a doubt that a product complies. Current research does 

not directly take into account uncertainties in the verification of 

geometrical specifications. It is limited, first of all, to determining 

the magnitude of the measured feature; then, calculations of mea-

surement uncertainties are made separately. To compensate for this 

problem, we are going to present surface modelling based on the 

notion of random vectors. In this way we will be able to determine 

the uncertainty of the complete surface. This method will be pre-

sented in this chapter and used in the rest of the document to obtain 

a statistical index of the compliance of a product to a system of 
geometrical specifications. Fig. 4. Point/vector/scalar modelling. 



 

  
 

  

Fig. 5. Random vector of a cylinder. 

probability density function f is defined as: 

E E 
f : <n →]0, 1[ 

P → f (P) 

E 

˝ 

The probability that P is found within a space, ˝, is given by the 

function f defined as follows: 
Z Z Z 

E . . . f (ai)dai = prob(P ∈ ˝) 

The standard properties defined in one-dimensional statistics 

remain valid: 

• Probability density f has values in <+ Z Z 
R 

• The value of the repartition function on <n is: . . .     f (ai)dai = 

<n 

1 

E 

RR R 
i 

E 
E 

i 
RR R 

We assume that the components of random vector a are 

continuous with a probability density f which admits statistical 

moments. These moments are defined by the following integral: 

mki 
= . . . aki f (ai)dui with: ki ∈ N designating the moment of 

order k of the variable i of vector P. 
If the random components P of the vector contain a math-

ematical expectation, the centered moments can be calculated: 

k = . . . [ai − E(ai)] 
ki f (ai) dai . 

The concept of a covariance matrix can be very useful for repre-

senting the second order moments. 

E 

3.2.2. The first two moments of the random vector 

The preceding section defined the different moments of the ran- 
dom vector via the hypothesis of existence. Deriving from the basic 

concepts of multi-dimensional statistics, the expectation vectorand 

the variance covariance matrix of a random vector can be defined. 
When P, random vector of n dimensions and components 

[P1, P2, . . . , Pn]
T

, has first order moments, its expectation vector 

is defined as follows: 

E 

⎪  ⎪  ⎨  

⎪  
⎩  

⎧
E(P1) 

E(P2) 
E(P)            . 

⎪  . 
E(Pn) 

E Given that P, a random vector of n dimensions and components 

[P1, P2, . . . ., Pn]
T 

which admits second order moments, and thus 

Fig. 6. Random vector of a plane (point and orientation vector). 

E 
. . . . . 

cov(Pn, P1) . . . var(Pn) 

first order moments, its variance covariance matrix is defined as: 

⎛  
var(P1) cov(P1, P2) . . cov(P1, Pn)

⎞  

⎜ cov(P2, P1) . . . . ⎟  
cov(p) = . . . . . ⎜  ⎟  

⎝  ⎠  

E 

The variance covariance matrix is a square matrix of n× n dimen-

sions. 
For example, in the case of a plane defined by a point C and a 

normal vector v (Fig. 6), the expectation vector and the variance 

covariance matrix are: 

E 

For the first statistical moment: 

P = 
1

Cx      Cy      Cz      vx      vy      vz 

                                             
T For the second statistical moment: 

E 

= 
⎢  
⎢  
⎣  

cov(P) 
⎡  

var(Cx) 

cov(Cy, Cx) 
cov(Cz, Cx) 

cov(vx, Cx) 

cov(vy, Cx) 

cov(vz, Cx) 

cov(Cx, Cy) 

var(Cy) 

cov(Cz, Cy) 

cov(vx, Cy) 

cov(vy, Cy) 
cov(vz, Cy) 

cov(Cx, Cz) 

cov(Cy, Cz) 

var(Cz) 

cov(vx, Cz) 

cov(vy, Cz) 
cov(vz, Cz) 

cov(Cx, vx) 

cov(Cy, vx) 

cov(Cz, vx) 

var(vx) 

cov(vy, vx) 

cov(vz, vx) 

cov(Cx, vy) 

cov(Cy, vy) 

cov(Cz, vy) 

cov(vx, vy) 

var(vy) 

cov(vz, vy) 

cov(Cx, vz) 
⎤  

cov(Cy, vz) 

cov(Cz, vz) 

cov(vx, vz) 

cov(vy, vz) 
var(vz) 

⎥  
⎥  
⎦  

3.2.3. Best-fitting and estimating uncertainties 
The first step in best-fitting is choosing a model to describe the 

measured surface. The model is an equation of the surface. It must 

enable us to make a best fit based on a statistical criterion and to 

express the residues of the best fit. The calculation is carried out 

by expressing the distance between probed points and the model 

to best fit. Models used in this paper are based on the descrip-

tion “point, vector(s), parameter(s)” described in Section 3.1 used 

as a basis for the random vector. These models are expressed in 

parametric form: 

S E E
p(u, v) 

where u and v represent curvilinear coordinates of the surface. The 

distance between point M and the best-fit model is marked as d and 

given by the function d defined as: 

d : <3 → < 

d(Mj) → dj 

The second step is the choice of the best-fitting criterion. This crite-

rion depends on the hypothesis taken on the distribution function 

of residuals [16] written as the series f. 
The criterion used is maximum likelihood which gives an inde-

pendent generic approach to function f. The goal is to maximize the 

likelihood function defined as: 
NbP Y 

ϕ =  f [d(Mj)] 

j=1 

where NbP represents the number of data points. 
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Function ϕ only presents one overall maximum for surfaces pro-

duced by our means of production. This property has been shown in 

previous work [17]. The condition to check is to solve the following 

system of equations: 

⎪  
⎪  ⎪  ⎪  ⎪  

⎪  ⎪  ⎪  ⎪  
⎪  ⎩  

∂ϕ 
1 

2 
= 0 

. 

⎧  
⎪  

∂P 
= 0 

⎨  ∂ϕ 
∂P 

. 

⎪  
∂ϕ 

. 

∂Pn 
= 0 

where n represents the number of parameters. 
In the case of a Gaussian probability density function, the prob-

lem can be expressed in the following way: 

 
1  2 

X 

j=1 
 

  
2 

X ∂d j 

⎡   ⎤  
NbP 

⎣ − 1 
dj ⎦  

NbP NbP 
ϕ =     √

2 
e ⇒  

j=1 

dj 
∂Pi 

= 0 

If the n parameters, Pi, of the geometric element associated to the 

digitized surface were perfectly defined, the standard deviation  

could also be estimated in the same way: 

∂ϕ 
u 
t 1 X 

2 

v 
u NbP 

∂ 
= 0 ⇒   =       

NbP        
d

j
 
j=1 

However, such estimator would lead to a biased evaluation of , 

because a set of n parameters Pi has already been derived from the 

acquired data. Therefore, the standard deviation of the measure-

ment has to be computed with the following expression, also called 

residue of the least squares optimization: 

u 
t 1 X 

2 

v 
u NbP 

 = 
NbP − n  

d
j 

j=1 

This deviation, , can be propagated to deduce the covariance 

matrix of the estimated parameters Pi, using classical differential 

expressions of the uncertainties. From the diagonal components of 

the covariance matrix, the error bars of Pi are then easily calculated, 

since the statistical distribution of these random variables corre-

sponds to a Fisher–Student law. Moreover, the covariance matrix is 

also useful to propagate the uncertainties of the fitted surfaces to 

any derived geometric element. 
It has to be pointed out that the propagation process of the 

standard deviation  requires a precise definition of the deriva-

tives ∂dj/∂Pi. For that reason, a nonlinear algorithm, based on a 

Gauss–Newton type method, has been implemented to solve the 

optimization conditions. It does not require any coordinate trans-

formation and is not sensitive to the selection of initial intrinsic 

parameters. It allows proceeding all the classical surfaces, i.e. lines, 

planes, circles, cylinders, cones and spheres. 
Usually, the measurement uncertainties are assumed the same 

for all the digitized coordinates. Nevertheless, this hypothesis in not 

required to apply the maximum likelihood criterion. In fact, if the 

standard deviation, j, of each distance dj is well known, a weighted 

least squares criterion can be minimized to estimate the parameters 
of the fitted surface. 

Fig. 7. Parametric formulation of a cylinder. 

4. Field of probability of the presence of matter 

4.1. Objective and description of the method 

−−→   

−−→   

The next sections of the paper will define the probability 

that the real surface is, totally or partially included in the spec-

ified tolerance zone. For that purpose, the probability, written 

prob OM , that any point M of the 3D space is within the mat-

ter side of the real surface will be expressed. This model is called 

Field of probability of presence of the matter (FPPM). At the cur-

rent step of the method, the random vector of the surface has 

already been estimated. It represents the mean value and the set 

of variance/covariances of the geometrical parameters of the vec-

tor/point/dimension obtained during the best-fitting (described in 

Section 3). The expression of the FPPM is done in three steps. First, 

the distance between any point of the 3D space and the mean sur-

face has to be calculated. Its standard deviation has then to be 

derived from the variance/covariances of the random vector. Hence 

a parametric formulation of the mean surface must be written for 

these two operations. Finally the value of the FPPM is obtained 

by a simple integration of the Gaussian law. In this part, a for-

mulation enabling us to define the function prob OM     will be 

presented. 

4.2. Parametric formulation of mean estimated surface 

−−→ 

E 

E 
P 

E 

  
The first step in calculating probability prob OM is to find a 

parametric form for the mean estimated surface. This formulation 

will enable us to develop the estimated mean surface from the first 

statistical moment of random vector P. In some cases, a Cartesian 

formulation may appear more appropriate as in the case of a plane. 

However, such logic does not allow for a generic approach to the 

problem of verification. 
The idea put forward here is to develop a parametric equa-

tion SE (r, s) representing the complete associated surface. It will be 

defined with the random vector P, where r and s are the curvilinear 

coordinates of the surface. Fig. 7 shows an example of a cylindrical 

associated surface. 
The next section will show how to propagate the uncertainties 

of a random vector to a derived integral element. 

4.3. Propagating uncertainties 

4.3.1. The principle of propagation 
The previous sections explained how to evaluate the uncertain-

ties of a random vector by linearly propagating the variance of a 

one-dimensional random variable. The uncertainty propagation of 

a random vector of any dimensions toward another vector of any 
dimensions will be now presented. 



 

  
 

  

E 
Given any function g of <n in <, the variance of the value of g for 

a random vector P of n dimensions is expressed as: 

E 
n n 

E E 
∂P ∂P 

var[g(P)] = 
XX ∂g(P) ∂g(P)

cov(Pi, Pj) 

j=1 i=1 
i j 

E 
In the case of a function g of <n in <m, the covariance of the random 

vector g(P) is expressed as: 

E E 
n m 

E E 
∂P ∂P 

cov[gk(P), gl(P)] = 
XX ∂gk(P) ∂gl(P)

cov(Pi, Pj) 

i=1 j=1 
i j 

Using the Jacobian matrix of function g, the propagation of 

uncertainties can be written in a matrix form as follows: 

E E 
E E E T 

E E cov[g(P)] = J
g/P 

· cov(g) · J
g/P

 

With 

J E E = 

⎡  

⎢  
⎢  
⎢  
⎢  
⎣  

g m E E E 
∂P ∂P P 1 1 1 

E 
∂P 

g m E E ∂g1(P) 
. . . . . . . . .     

∂ 

∂ 

(P)
 

∂P P n n 

⎤  

⎥  
⎢  
∂g1(P)      ∂g2(P)     

. . . . . .     
∂ 

∂ 

(P) 

⎥  

⎢  ∂g1(P)         
. . .        . . . . . .         . . .      

⎥  
g/P 2 

. . . . . . . . . . . . . . . 
⎥  
⎥  
⎥  
⎦  

g i E 
P j where 

∂

∂

(P) 
represent the ith derivative of the function in respect 

E 

−→ 
P 

−→ −→ 
P 

−→ 

−→ E 
P E E E T 

E E 

to jth coordinate of P. 
In Section 4.2, the estimated mean surface of a real feature was 

represented by the parametric equations SE (r, s). The uncertainties 

of the random vector P will be propagated, through this equation, 
to any point of the surface. For a fixed set r and s, shown as u0 

and v0, the coordinates of point H are thus obtained within the 

mean surface: OH = SE (r0, s0). The aim is to determine the three-

dimensional variance of this same point H. It will be calculated from 
the covariance matrix of the random vector OH. Using the method 
defined before. This propagation is achieved in the following way: 

  
cov OH = cov[SE (r0, s0)] = J

S/P 
· cov(P) · J

S/P
 

E 
E P 

E 
E E ∂S E E 

E 

E ∂S E P 
2 

E 
E P x 

E 
E P z 

⎢  ⎥  

With: 
⎡                            ⎤  

∂S
Px                Py          

∂S
Pz
 

⎢  ∂P1 ∂P1 ∂P1 ⎥  
⎢  ⎥  
⎢  ⎥  
⎢  ⎥  

J
S     

= ⎢  ∂P 

x            . . .        . . . ⎥  

⎢  . . .        . . .        . . . ⎥  
∂S ∂S 
∂Pk          

. . .        
∂Pk 

⎣  ⎦  

OH E 
P E E E T T 

E      E 

In some cases, the parametric formulation of the mean surface 

requires using a local coordinate system. The make-up of the coor-

dinate system must be formulated and the uncertainties of the 

initial random vector must be propagated to the reference point. 
The propagation formula is found to be: 

cov
−→

= cov[SE (r0, s0)] = J
S/Rf 

· J
Rf/P 

· cov(P) · J
Rf/P 

· J
S/Rf

 

E 

E 

E 

where Rf represents the local coordinate system, and J
S/Rf 

repre-

sents the Jacobian matrix of the parametric equation in relation 

to the local coordinate system. The J
Rf/P 

is the Jacobian matrix of 

the construction of the local coordinate system in relation to the 

random vector P. 
The next sections present an application of uncertainty propa- 

gation in the case of a plane and a cylinder. 

Fig. 8. Parametrizing a plane. 

E E 
1
 
                                            E E E 

e 
1 

x z 
 
 
 

v 
0 E 

E v E ∧ e 1 
E E 

E v 
E 

4.3.2. Uncertainty propagation in the case of a plane 
The        random        vector        P        of        a        plane        is        P = 

OCx      OCy      OCz      vx      vy      vz     . To clarify the parametric equation, 
a local coordinate system (C, e1, e2, e3) can be constructed: 

 
z −→ E1 = p

v2 + v2 
·

−vx 

,     e2 = 
||v ∧ e1||

,     e3 = 
||v|| 

E The Jacobian matrix J
Rf/P 

of the construction of the coordinate 

system can be derived from the expressions of the coordinates 

of these vectors. Parametrizing the mean surface of the plane is 

achieved in Fig. 8. 
The parametric equation of the plane is: 

E 
E E E S
P
(r, s) = r · e1 + s · e2 

A fixed point H in the plane is expressed as: 
−→ E 

E 
−→ 

E E OH = S
P
(r0, s0) = OC + r0 · e1 + s0 · e2 

OH /Rf 

The Jacobian matrix used to propagate uncertainties toward 
point H is: 

"
1 0 0 r0       0 0     s0       0 0     0 0 0

# 

J−→ =     0 1 0     0     r0       0 0     s0       0     0 0 0 
0 0 1     0 0     r0       0 0     s0      0 0 0 

−→ 
E E E T T 

E      E 

In conclusion, the three-dimensional variance of point H within 
the estimated mean plane is: 

  
cov OH = J

S/Rf 
· J

Rf/P 
· cov(P) · J

Rf/P 
· J

S/Rf
 

E E 
1
 
                                                 E E E 

4.3.3. Propagating uncertainty in the case of a cylinder 
The       random       vector       P       of       a       cylinder       is       P = 

OCx      OCy      OCz      vx      vy      vz      R .     To     clarify     the     parametric 

equation, the local coordinate system Rf (C, e1, e2, e3, 1) can be 

constructed. The unit, shown as “1” in reference frame, is used as a 

basis for the parameter representing the radius of the cylinder. The 

components of the local coordinate system vectors are defined as 
follows: 

e 
1 

x z 

 
 
 

0 E v E ∧ e 1 
v E 

E 
E v 
v 

 vz −→ 
E1 = p

v2 + v2 
.

−vx 

,     e2 = 
||E ∧ e1||

,     e3 = 
||E||

 

E 
The Jacobian matrix of the construction of coordinate system Rf, 

named J
Rf/P

, can be derived from these expressions. Parametrizing 

the mean surface of the cylinder is achieved in Fig. 9.The parametric 

equation of the surface is obtained: 
−→ E 

P E E OH = SE (, ) = v + Rn() 

With 

E E E n() = cos() · u + sin() · w 
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Fig. 9. Parametrizing a cylinder. 

E 
with  being the axial parameter, i.e. the height in relation to cen-

ter C in the direction of vector v, and  the radial parameter. The 

Jacobian matrix used to propagate uncertainties toward point H is: 

S 0 

"
1 

J−→
/Rf 

=     

0

 
0 0 R · cos() 

1 0 0 
0 1 0 

0 
R · cos() 

0 

0 

0 
R · cos() 

R · sin() 

0 
0 

0 
R · sin() 

0 

0 

0 
R · sin() 

     0     0     ux · cos() + vx · sin() 
# 0          

0     uy · cos() + vy · sin() 
0     0          uz · cos() + vz · sin() 

Finally, the three-dimensional variance of point H within the esti-

mated mean cylinder is: 
−→   

E E E T T 
E      E cov OH = J

S/Rf 
· J

Rf/P 
· cov(P) · J

Rf/P 
· J

S/Rf
 

4.4. Formulating the field of probability of the presence of matter 

(FPPM) 

−−→   The goal of our statistical modelling is to clarify a function 

prob OM of <3 in < which, at any point M in space, associates 

its probability of being within matter. This calculation is carried 

out in four steps (Fig. 10). 
In the above section, the result of propagating uncertainties 

of the random vector toward point H within the estimated mean 

surface was the three-dimensional variance of this point. In other 
words, propagating uncertainties allows us to characterize the 3D 

Fig. 11. Variance of point H. 

distribution of probability representing the position, or the coor-

dinates, of point H. As indicated in Fig. 11, point H = q(M) is the 

orthogonal projection on the mean surface of any point M in a 3D 

space. To define the FPPM or the probability that M is part of matter, 

only the dispersion of point H in the normal direction to the surface 
is required (Fig. 11). 

E 
2 
OH n S 

T −→   
−→ −→ 

n S OH −→ 
2 2 2 

−−→   

E 

The dispersion of point H in the normal direction of the mean 

surface is obtained by projecting onto a unitary normal vector 

(shown as nS in Fig. 11). The projection is demonstrated by the 

relation: −→
·
−→ = nS     · cov OH · nS . 

To get the total local variance, adding the variance of the residues 

obtained in best-fitting (the statistical representation of the devia-

tions due to the form defects and the random perturbations of the 

CMM) will suffice: 
Total/

−→ = −→
.nS 

+
Residues

. 

The standard deviation in the normal direction of the mean sur- 
face and the position of point H enables us to give a complete 

definition of the probability density function to integrate in order 

to calculate prob OM . To carry out this operation, the integration 

line has to be clarified. This line is defined by point H and direction 

nS (Fig. 12). 
This representation makes it possible to visualize the bounds 

used in the integral: [−∞;d(MH)]. Our application will be restricted 

to surfaces of high quality. In this case, the probability density of the 

position of a point within an estimated mean surface has a Gaussian 
behaviour [16]. The following expression of FPPM is thus obtained: 

OM 

MH E ·n Z 

2 
n S 

2 
d x ( ) 

n S 

−−→ 
 2 

prob
−−→

=          

S 

q     
1             

e

−1        

Total/
−→      

dx
 

−∞ 
2

Total/
−→ 

Fig. 10. The steps in calculating prob(M). Fig. 12. Integration principle. 
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where d(x) represents the algebraic distance to the center of Gaus-

sian distribution (point H) (Fig. 13). 

5. Expressing iso-probable surfaces: statistical matter 

boundaries (SMB) 

The FPPM permits to estimate the probability of any point of the 

3D space to be inside the matter. In other word, this is a statistical 

representation of the limit of the matter. The FPPM do not express 

a finite boundary of the matter but a fuzzy one. However, it is pos-

sible to express a finite boundary for a fixed risk. This is done by 

the concept of statistical matter boundaries (SMB). With a mathe-

matical point of view, this is an iso-probable surface of the FPPM. 

In a physical point of view, the SMB represents the estimation, for 

a fixed risk, of the envelope containing the matter. This section will 

show how to use the FPPM in order to calculate statistical matter 

boundaries accurately. First, the definition of SMB will be presented. 

Next, a practical method of calculation will be proposed, followed 

by examples of a cylinder and a plane. 

5.1. Definition 

  −−→  

The statistical matter boundaries are defined as the iso-

probable surfaces of the presence of matter. From a mathematical 

point of view, an SMB is delimited by the following space: 
M/p OM = p˛, p˛ ∈ ]0, 1[ . 

In other words, the SMB is the solution set of the following 

equation: 

OM E ·n Z 
1 

2 
E 

E 

−−→ h i2 
−1 d(x) 

p˛ = q e 
2        Total/n 

dx 

−∞ 
2

Total/n
 

−−→ 
where OM is the unknown. 

5.2. Practical calculation of an SMB 

It is difficult to solve the equation of an iso-probable surface. 

However, it is possible to provide a solution in parametric form 

taking the uncertainty of a point on the estimated mean surface. 

Since the position of a point within an estimated mean surface has 

a Gaussian behaviour, the limit in variations of this surface can be 

calculated for a fixed risk. Maximum variations are calculated by a 
constant k times standard deviation. 

Fig. 14. The SMB of a cylinder. 

−−→ 
The parametric equation of an SMB is written: SMB(r, t) = 

E 
P 

q 
2 

n S 
−→ −→ SE (r, s) + k · 

Total/
−→ · ns(r, s), where ns(r, s) represents the vec-

tor normal to the mean surface with curvilinear coordinates r and 

s, and k the constant fixing risk. 

5.3. Case studies 

v E 

−−→ −→ 
E E 

−−→ −→ 
v E −−→ 

E E 

5.3.1. SMB of a cylinder 
The least complex case study is the SMB of a cylinder. A local 

coordinate system does not have to be constructed. Consider a point 

C, a vector E, a scalar R and vector n() representing, respectively, a 

point within the axis of the cylinder, the direction of the cylinder 

axis, the radius, and a normal vector rotating around the cylinder 

axis. The cylinder can thus be defined in the following parametric 

equation (Fig. 11): OM(, ) = OC +  · v + R · n(). 
After propagation and projection along the normal to the cylin- 

der, at given point, the SMB equation is as follows: 
SMB(, ) 

= OC +  · E + R · n() + k ·
1

n() · cov(OC) · n()
T
 

−−→ −−→ 
E E E E 

R 
2 E 

+2 · n() · cov(OC) · n()
T 

+ 2 · n() · cov(OC) · n()
T 

i 1 
+2 + res     

2 

· n() 

which makes it possible to plot the SMB of the cylinder (Fig. 14). 

The result is a hyperboloid with an elliptic base. Physically, the 
hyperboloid shape canbe explainedby theuncertainties on orienta-

tion parameters of the estimated mean cylinder. This distortion will 

be found on every best-fit surface containing orientation parame- 
ters. 

5.3.2. The SMB of a plane 
The case of a plane is interesting because it is much easier to 

evaluate its SMB from a Cartesian equation. The random vector of 

a plane is in the following form: 

E 
1 

P = OCx      OCy      OCz      nx      ny n 
     

T z 

We therefore express the distance d to the plane with a Cartesian 

equation: 

d = (x − OCx)nx + (y − OCy)ny + (z − OCz)nz 

which gives us the following Jacobian operator. 

Uncertainty is propagated in the following way: 

P 
E T var[d(x, y, z)] = J

d/
−→cov(P)J

d/
−→ 
P 

Taking care that the normal to the plane is oriented correctly 
Fig. 13. Integrating the probability density function. out of matter, the above enables us to get the following Cartesian 



 

 

  
 

 

Fig. 15. SMB of a plane. 

equation: 
p 

(x − OCx)nx + (y − OCy)ny + (z − OCz)nz − k var(d(x, y, z)) = 0 

The surfaceobtained is a paraboloid (Fig. 15) where sections parallel 

to the mean plane are elliptical. As the cylinder case, the distor-

tion obtained is depending on the uncertainty of the orientation 

parameters of the mean estimated plane. 

6. Conclusion 

In this paper, a statistical approach of CMM measurements has 

been proposed to characterize any real surface. 
In this approach, a geometric element is no longer defined by 

a perfect feature but is described by a FPPM. This field, based on 

the concept of random vectors, defines the probability of any point 

to stay inside the matter. It integrates the random perturbations of 

the CMM, the uncontrolled factors of the sampling strategy and the 

form defects of the measured surface. 
This concept can be applied to any standard surface (plane, 

sphere, cylinder, cone, . . .) and extended to models accounting for 

typical form errors thus increasing the significance of the best-fit 

method. This method has been tested with experiments on classi-

cal geometrical specifications [16]. The increase of the number of 

best-fit parameters to describe and fit the measured surfaces leads 

to a better characterization of the form defects and thus reduces 

considerably the uncertainties [18]. 
The second part of our work will focus to the implementation 

of a virtual gauge method integrating the field of probability of the 

presence of matter. It will permit checking the geometrical confor- 
mance of a real part defining the risk of acceptance or refusal of the 

product. It will automatically include all errors or random perturba-

tions and avoid any intermediate geometrical construction which 

amplifies the initial measurement uncertainties. 
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