G. Morton, D. Cummings, D. Baskin, G. Barsh, and M. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.81, issue.7109, pp.289-95, 2006.
DOI : 10.1016/j.physbeh.2004.04.034

J. Pestka, Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance, Archives of Toxicology, vol.85, issue.2, pp.663-79, 2010.
DOI : 10.2527/jas1983.573655x

W. Bryden, Mycotoxins in the food chain: human health implications, Asia Pac J Clin Nutr, vol.16, pp.95-101, 2007.
DOI : 10.1016/b978-0-444-52272-6.00701-7

G. Lombaert, P. Pellaers, V. Roscoe, M. Mankotia, and R. Neil, Mycotoxins in infant cereal foods from the Canadian retail market, Food Additives and Contaminants, vol.51, issue.5, pp.494-504, 2003.
DOI : 10.4315/0362-028X-50.6.502

R. Schothorst and H. Van-egmond, Report from SCOOP task 3.2.10 ???collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states???, Toxicology Letters, vol.153, issue.1, pp.133-176, 2004.
DOI : 10.1016/j.toxlet.2004.04.045

M. Bretz, M. Beyer, B. Cramer, A. Knecht, and H. Humpf, Mycotoxin Deoxynivalenol, Journal of Agricultural and Food Chemistry, vol.54, issue.17, pp.6445-51, 2006.
DOI : 10.1021/jf061008g

C. Wolf-hall, M. Hanna, and L. Bullerman, Stability of Deoxynivalenol in Heat-Treated Foods, Journal of Food Protection, vol.62, issue.8, pp.962-966, 1999.
DOI : 10.4315/0362-028X-62.8.962

K. Yamamoto, S. Matsunaga, M. Matsui, N. Takeda, and A. Yamatodani, Pica in mice as a new model for the study of emesis, Methods and Findings in Experimental and Clinical Pharmacology, vol.24, issue.3, pp.135-143, 2002.
DOI : 10.1358/mf.2002.24.3.802297

D. Arnold, P. Mcguire, E. Nera, K. Karpinski, and M. Bickis, The toxicity of orally administered deoxynivalenol (vomitoxin) in rats and mice, Food and Chemical Toxicology, vol.24, issue.9, pp.935-976, 1986.
DOI : 10.1016/0278-6915(86)90321-2

B. Rotter, R. Rotter, B. Thompson, and H. Trenholm, Investigations in the use of mice exposed to mycotoxins as a model for growing pigs, Journal of Toxicology and Environmental Health, vol.68, issue.2, pp.329-368, 1992.
DOI : 10.1016/0378-4274(86)90096-2

B. Flannery, W. Wu, and J. Pestka, Characterization of deoxynivalenol-induced anorexia using mouse bioassay, Food and Chemical Toxicology, vol.49, issue.8, pp.1863-1872, 2011.
DOI : 10.1016/j.fct.2011.05.004

URL : http://europepmc.org/articles/pmc3124119?pdf=render

J. Pestka and C. Amuzie, Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: Comparison of weanling and adult mice, Food and Chemical Toxicology, vol.46, issue.8, pp.2826-2857, 2008.
DOI : 10.1016/j.fct.2008.05.016

URL : http://europepmc.org/articles/pmc2620205?pdf=render

S. Van-kol, P. Hendriksen, H. Van-loveren, and A. Peijnenburg, The effects of deoxynivalenol on gene expression in the murine thymus, Toxicology and Applied Pharmacology, vol.250, issue.3, pp.299-311, 2011.
DOI : 10.1016/j.taap.2010.11.001

D. West, M. Greenwood, K. Marshall, and S. Woods, Lithium chloride, cholecystokinin and meal patterns: Evidence that cholecystokinin suppresses meal size in rats without causing malaise, Appetite, vol.8, issue.3, pp.221-228, 1987.
DOI : 10.1016/0195-6663(87)90021-3

M. Porter, M. Arnold, and W. Langhans, Lipopolysaccharide-induced anorexia following hepatic portal vein and vena cava administration, Physiology & Behavior, vol.64, issue.5, pp.581-585, 1998.
DOI : 10.1016/S0031-9384(98)00082-1

M. Flynn, T. Scott, T. Pritchard, and C. Plata-salamán, Mode of action of OB protein (leptin) on feeding, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.268, issue.37, pp.174-183, 1998.
DOI : 10.2337/diab.46.3.335

S. Hsiao and C. Wang, Continuous infusion of cholecystokinin and meal pattern in the rat, Peptides, vol.4, issue.1, pp.15-22, 1983.
DOI : 10.1016/0196-9781(83)90158-4

C. Le-roux, R. Batterham, S. Aylwin, M. Patterson, and C. Borg, Attenuated Peptide YY Release in Obese Subjects Is Associated with Reduced Satiety, Endocrinology, vol.147, issue.1, pp.3-8, 2006.
DOI : 10.1210/en.2005-0972

D. Vanderweele, Insulin is a prandial satiety hormone, Physiology & Behavior, vol.56, issue.3, pp.619-641, 1994.
DOI : 10.1016/0031-9384(94)90310-7

H. Zheng, L. Patterson, C. Phifer, and H. Berthoud, Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.289, issue.1, pp.247-58, 2005.
DOI : 10.1210/endo.141.4.7410

URL : http://ajpregu.physiology.org/content/ajpregu/289/1/R247.full.pdf

D. Prelusky and H. Trenholm, The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine, Natural Toxins, vol.35, issue.5, pp.296-302, 1993.
DOI : 10.1212/WNL.8.Suppl_1.41

A. Garfield, D. Lam, O. Marston, M. Przydzial, and L. Heisler, Role of central melanocortin pathways in energy homeostasis, Trends in Endocrinology & Metabolism, vol.20, issue.5, pp.203-218, 2009.
DOI : 10.1016/j.tem.2009.02.002

W. Fan, B. Boston, R. Kesterson, V. Hruby, and R. Cone, Role of melanocortinergic neurons in feeding and the agouti obesity syndrome, Nature, vol.385, issue.6612, pp.165-168, 1997.
DOI : 10.1038/385165a0

M. Schwartz, S. Woods, P. D. Jr, R. Seeley, and D. Baskin, Central nervous system control of food intake, Nature, vol.814, issue.6778, pp.661-671, 2000.
DOI : 10.1016/S0006-8993(98)00956-1

H. Berthoud, Multiple neural systems controlling food intake and body weight, Neuroscience & Biobehavioral Reviews, vol.26, issue.4, pp.393-428, 2002.
DOI : 10.1016/S0149-7634(02)00014-3

. Oh-i-s, H. Shimizu, T. Satoh, S. Okada, and S. Adachi, Identification of nesfatin-1 as a satiety molecule in the hypothalamus, Nature, vol.1, issue.7112, pp.709-721, 2006.
DOI : 10.1016/j.cmet.2005.04.004

H. Shimizu, . Oh-i-s, K. Hashimoto, M. Nakata, and S. Yamamoto, Peripheral Administration of Nesfatin-1 Reduces Food Intake in Mice: The Leptin-Independent Mechanism, Endocrinology, vol.150, issue.2, pp.662-71, 2009.
DOI : 10.1210/en.2008-0598

M. Bonnet, E. Pecchi, J. Trouslard, A. Jean, and M. Dallaporta, Central nesfatin-1-expressing neurons are sensitive to peripheral inflammatory stimulus, Journal of Neuroinflammation, vol.6, issue.1, p.27, 2009.
DOI : 10.1186/1742-2094-6-27

URL : https://hal.archives-ouvertes.fr/hal-00481497

M. Goebel, A. Stengel, L. Wang, N. Lambrecht, and Y. Taché, Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei, Neuroscience Letters, vol.452, issue.3, pp.241-247, 2009.
DOI : 10.1016/j.neulet.2009.01.064

URL : http://europepmc.org/articles/pmc2674947?pdf=render

D. Kohno, M. Nakata, Y. Maejima, H. Shimizu, and U. Sedbazar, Nesfatin-1 Neurons in Paraventricular and Supraoptic Nuclei of the Rat Hypothalamus Coexpress Oxytocin and Vasopressin and Are Activated by Refeeding, Endocrinology, vol.149, issue.3, pp.1295-301, 2008.
DOI : 10.1210/en.2007-1276

H. Shimizu, A. Ohsaki, . Oh-i-s, S. Okada, and M. Mori, A new anorexigenic protein, nesfatin-1, Peptides, vol.30, issue.5, pp.995-1003, 2009.
DOI : 10.1016/j.peptides.2009.01.002

S. Benoit, M. Schwartz, D. Baskin, S. Woods, and R. Seeley, CNS Melanocortin System Involvement in the Regulation of Food Intake, Hormones and Behavior, vol.37, issue.4, pp.299-305, 2000.
DOI : 10.1006/hbeh.2000.1588

E. Timofeeva, E. Baraboi, and D. Richard, Contribution of the vagus nerve and lamina terminalis to brain activation induced by refeeding, European Journal of Neuroscience, vol.80, issue.6, pp.1489-501, 2005.
DOI : 10.1113/jphysiol.1994.sp020171

G. Hermann, G. Emch, C. Tovar, and R. Rogers, c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.259, issue.1, pp.289-99, 2001.
DOI : 10.1002/cne.903230310

J. Pestka, Z. Islam, and C. Amuzie, Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse, Toxicology Letters, vol.178, issue.2, pp.83-90, 2008.
DOI : 10.1016/j.toxlet.2008.02.005

URL : http://europepmc.org/articles/pmc2696392?pdf=render

C. Girardet, M. Bonnet, R. Jdir, M. Sadoud, and S. Thirion, Central Inflammation and Sickness-Like Behavior Induced by the Food Contaminant Deoxynivalenol: A PGE2-Independent Mechanism, Toxicological Sciences, vol.148, issue.127, 2011.
DOI : 10.1210/en.2007-0394

URL : https://academic.oup.com/toxsci/article-pdf/124/1/179/11000581/kfr219.pdf

E. Pecchi, M. Dallaporta, S. Thirion, C. Salvat, and F. Berenbaum, Involvement of central microsomal prostaglandin E synthase-1 in IL-1??-induced anorexia, Physiological Genomics, vol.25, issue.3, pp.485-92, 2006.
DOI : 10.1016/0031-9384(92)90362-6

URL : https://hal.archives-ouvertes.fr/hal-00088990

E. Pecchi, M. Dallaporta, A. Jean, S. Thirion, and J. Troadec, mPGES-1 knock-out mice are resistant to cancer-induced anorexia despite the absence of central mPGES-1 up-regulation in wild-type anorexic mice, Journal of Neuroimmunology, vol.199, issue.1-2, pp.104-118, 2008.
DOI : 10.1016/j.jneuroim.2008.05.012

URL : https://hal.archives-ouvertes.fr/hal-00398610

S. Pinto, A. Roseberry, H. Liu, S. Diano, and M. Shanabrough, Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin, Science, vol.304, issue.5667, pp.110-115, 2004.
DOI : 10.1126/science.1089459

M. Kurokawa, K. Akino, and K. Kanda, A new apparatus for studying feeding and drinking in the mouse, Physiology & Behavior, vol.70, issue.1-2, pp.105-117, 2000.
DOI : 10.1016/S0031-9384(00)00226-2

E. Pecchi, M. Dallaporta, C. Charrier, J. Pio, and A. Jean, Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat, The Journal of Comparative Neurology, vol.26, issue.3, pp.353-68, 2007.
DOI : 10.1113/jphysiol.2004.064121