T. Pe, EtOAc 60:40) Rf 0, pp.p-anisaldehyde

E. Vitaku, D. T. Smith, and J. T. Njardarson, Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals, Journal of Medicinal Chemistry, vol.57, issue.24, pp.10257-10274, 2014.
DOI : 10.1021/jm501100b

K. Maruoka, Asymmetric Organocatalysis; Thieme: Stuttgart, 2012. (b) Dalko, P. I., Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications

J. Yu, F. Shi, L. Gong, H. Pham, I. Chataigner et al., Br??nsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles, Accounts of Chemical Research, vol.44, issue.11, pp.1156-1171, 2011.
DOI : 10.1021/ar2000343

J. Moreau, A. Duboc, C. Hubert, J. Hurvois, and J. Renaud, Metal-free Br??nsted acids catalyzed synthesis of functional 1,4-dihydropyridines, Tetrahedron Letters, vol.48, issue.49, pp.8647-8650, 2007.
DOI : 10.1016/j.tetlet.2007.10.040

H. Gotoh, T. Hayashi, M. Shoji, R. L. Johansen, S. Bertelsen et al., (b) Franke, Angew. Chem. Int. Ed. P. T Chem. Asian J, vol.44, issue.3, pp.4212-4215, 2005.

B. Jiang, T. Rajale, W. Wever, S. Tu, G. Li et al., Synthesis, Chem. Asian J. Chem. Rev. Angew. Chem. Int. Ed. Chem. Rev. Chem. Soc. Rev. Multicomponent Reactions in Organic J. Eur. J. Org. Chem. C T, vol.5, issue.167, pp.2318-2335, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01135944

M. M. Duque, C. Allais, N. Isambert, T. Constantieux, J. Rodriguez et al., ??-Diketo Building Blocks for MCRs-Based Syntheses of Heterocycles, Ideas in Chemistry and Molecular Sciences, pp.227-277, 2010.
DOI : 10.1007/7081_2010_26

D. Bonne, Y. Coquerel, J. Rodriguez, T. Constantieux, X. Bugaut et al., 3-Dicarbonyls in Multicomponent Reactions In Multicomponent Reactions in Organic Synthesis (i) Stereoselective Multiple Bond-Forming Transformations in Organic Synthesis, ) For a review on organocatalytic enantioselective Michael additions, see: Zhang, Y.; Wang, W. Catal. Sci. Tech. 2012, pp.42-53, 1920.

H. Du, J. Rodriguez, X. Bugaut, and T. Constantieux, (b) For the racemic version, see: Liéby- Muller, Adv. Synth. Catal, vol.2014, issue.356, pp.851-856, 2007.

O. Baslé, Y. Génisson, J. Plaquevent, X. Bugaut, T. Constantieux et al., For racemic versions, see: (b), Angew. Chem. Int. Ed. J. Am. Chem. Soc. Green Chem, vol.52, issue.13, pp.14143-14146, 2005.

S. Bertelsen, R. L. Johansen, K. A. Jørgensen, P. Xu, and D. J. Dixon, (b) For a trimolecular coupling involving the in-situ generation of an ?,?-unsaturated imine, see: (c) For a transformation with a nitroolefin as the Michael acceptor, Chem. Commun. Angew. Chem. Int. Ed, vol.47, issue.12, pp.3016-3018, 2008.

Y. Wang, F. Shi, X. Yao, M. Sun, L. Dong et al., Asymmetric Organocatalytic Relay Cascades: Catalyst-Controlled Stereoisomer Selection in the Synthesis of Functionalized Cyclohexanes, Angewandte Chemie International Edition, vol.57, issue.52, pp.9834-9838, 2009.
DOI : 10.1002/anie.200905014

J. P. Jasinsk, U. Tayvah, and W. Zhang, (f) For a recent sequential one-pot coupling with benzylamine as ammonia surrogate, see: Rong, C.; Pan, Adv. Synth. Catal, vol.357, pp.3820-3824, 2015.

H. Tian, Y. Shi, H. Du, J. Rodriguez, X. Bugaut et al., (13) We have also recently described early results of organocatalytic multicomponent reactions with ?-substituted enals, however with low enantioselectivities These results will not be further discussed in this Feature Article. (14) There is also a possibility to prepare in a stepwise fashion suitably substituted 4-aryl-1,4-dihydropyridines with a free nitrogen atom and to oxidize them into axially chiral 4-arylpyridine with a central-to-axial conversion of chirality, Chem. Eur. J, vol.22, issue.47, pp.2887-2891, 2015.

J. Franzén, A. Fisher, H. Huang, X. Liang, J. Ye et al., Asymmetric Alkaloid Synthesis: A One-Pot Organocatalytic Reaction to Quinolizidine Derivatives, Angewandte Chemie International Edition, vol.48, issue.4, pp.787-791, 2008.
DOI : 10.1002/anie.200805130

L. Xu, L. Li, and Z. Shi, Asymmetric Synthesis with Silicon-Based Bulky Amino Organocatalysts, Advanced Synthesis & Catalysis, vol.63, issue.2-3, pp.243-279, 2010.
DOI : 10.1002/adsc.200900797

H. Du, J. Rodriguez, X. Bugaut, and T. Constantieux, For related reports, see: (b) Horitsugi, Chem. Eur. J. N.; Kojima, K.; Yasui, K.; Sohtome, Y.; Nagasawa, K. Asian J. Org. Chem, vol.20, issue.16, pp.8458-8466, 2014.

Y. Liu, J. Zhang, P. Xu, and Y. Luo, Organocatalytic Asymmetric Michael Addition of 1-Acetylindolin-3-ones to ??,??-Unsaturated Aldehydes: Synthesis of 2-Substituted Indolin-3-ones, The Journal of Organic Chemistry, vol.76, issue.18, pp.7551-7555, 2011.
DOI : 10.1021/jo201123p

M. Rueping, C. M. Volla, M. Bolte, and G. Raabe, General and Efficient Organocatalytic Synthesis of Indoloquinolizidines, Pyridoquinazolines and Quinazolinones through a One-Pot Domino Michael Addition-Cyclization- Pictet-Spengler or 1,2-Amine Addition Reaction, Advanced Synthesis & Catalysis, vol.92, issue.14-15, pp.2853-2859, 2011.
DOI : 10.1002/adsc.201100258

D. A. Evans, M. D. Ennis, T. Le, N. Mandel, and G. Mandel, Asymmetric acylation reactions of chiral imide enolates. The first direct approach to the construction of chiral .beta.-dicarbonyl synthons, Journal of the American Chemical Society, vol.106, issue.4, pp.1154-1156, 1984.
DOI : 10.1021/ja00316a077

P. Elsner, H. Jiang, J. B. Nielsen, F. Pasi, and K. A. Jørgensen, See experimental part for details, Chem. Commun, issue.2728, pp.5827-5829, 2008.

M. Sato, N. Kanuma, T. Kato, M. Presset, Y. Coquerel et al., 1315- 1321; for examples of the advantage of microwave irradiation for the synthesis of 1,3-dicarbonyl compounds through ketoketenes intermediates, see: (b), Chem. Pharm. Bull. J. Org. Chem. J. Chem. Eur. J. Chem. Commun, vol.30, issue.52, pp.415-418, 1982.

I. D. Jurberg, B. Peng, E. Wöstefeld, M. Wasserloos, and N. Maulide, Intramolecular Redox-Triggered C???H Functionalization, Angewandte Chemie International Edition, vol.59, issue.8, pp.1950-1953, 2012.
DOI : 10.1002/anie.201108639

URL : http://hdl.handle.net/11858/00-001M-0000-0010-20BD-1

M. Paravidino, R. Scheffelaar, R. F. Schmitz, F. J. De-kanter, M. B. Groen et al., A Flexible Six-Component Reaction To Access Constrained Depsipeptides Based on a Dihydropyridinone Core, The Journal of Organic Chemistry, vol.72, issue.26, pp.10239-10242, 2007.
DOI : 10.1021/jo701978v

S. Lee, For means of comparison in 19 F NMR, an authentic sample of product 30 was prepared by the treatment of 29 with potassium phenylethynyltrifluoroborate 24 in the presence of Sc(OTf)3. See experimental part for details. (34) The known trapping of the activated iminium ion by the organotrifluoroborate salt was not observed

T. L. Lohr and T. Marks, For recent reviews on organo-and metal-dual catalysis, see: (a) Du, Z Z. Chem. Soc. Rev. J. Nat. Chem, vol.42, issue.7, pp.1337-1378, 2013.

G. A. Molander, B. W. Katona, and F. Machrouhi, Development of the Suzuki???Miyaura Cross-Coupling Reaction:?? Use of Air-Stable Potassium Alkynyltrifluoroborates in Aryl Alkynylations, The Journal of Organic Chemistry, vol.67, issue.24, pp.8416-8424, 2002.
DOI : 10.1021/jo0262356

S. V. Ley, S. C. Smith, and P. Woodward, Further reactions of t-butyl 3-oxobutanthioate and t-butyl 4-diethyl-phosphono-3-oxobutanthioate : Carbonyl coupling reactions, amination, use in the preparation of 3-acyltetramic acids and application to the total synthesis of fuligorubin A., Tetrahedron, vol.48, issue.6, pp.1145-1174, 1992.
DOI : 10.1016/S0040-4020(01)88210-7