Chemical and physical transfers in an ultramafic rock weathering profile: Part 1. Supergene dissolution of Pt-bearing chromite
Daouda Traoré, Anicet Beauvais, François Chabaux, Chantal Peiffert, Jean-Claude Parisot, Jean-Paul Ambrosi, Fabrice Colin

To cite this version:

HAL Id: hal-01422038
https://hal-amu.archives-ouvertes.fr/hal-01422038
Submitted on 23 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Chemical and physical transfers in an ultramafic rock weathering profile: 1. Supergene dissolution of Pt-bearing chromite

Daouda Traoré 1,2, Anicet Beauvais 1,2-*, François Chabaux 3, Chantal Peiffert 4,
Jean-Claude Parisot 1,2, Jean-Paul Ambrosi 2, Fabrice Colin 1,2

1 Institut de Recherche pour le Développement (IRD), UMR 161 CEREGE, BP A5, 98848 Nouméa, Nouvelle-Calédonie
2 Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, (UMR CNRS 6635 / UMR IRD 161), Aix-Marseille Université, Université Paul Cézanne, BP 80, 13545 Aix en Provence Cedex 4, France
3 EOST-Centre de Géochimie de la Surface (CNRS/ULP), Université Louis Pasteur, 1 rue Blessig, 67084 Strasbourg Cedex, France
4 UMR G2R/CREGU, Université Henri Poincaré 54506 Vandoeuvre-lès-Nancy, France

*Corresponding author: Anicet.beauvais@noumea.ird.nc (Tel/Fax: (687) 26 07 59/67)
ABSTRACT

Chemical weathering and supergene dissolution processes of platinum-bearing chromite are studied in a lateritic weathering profile developed at the expense of ultramafic rocks in New Caledonia (Southwest Pacific). The chemical distributions of alkaline earth, transition metals and precious metals, including Pt and Pd are determined in a weathering profile varying from bedrock at the base upward through coarse and fine saprolites, and capped by a mottled zone and a lateritic colluvial nodular horizon. Chemical analyses and mass balance calculations suggest that progressive weathering of the parent rock is characterized by an enrichment of Fe, Co, and Mn, segregation of Ni at the transition between the bedrock and the coarse saprolite and in the lower part of the fine saprolite, and a depletion of Mg, Ca, Si, Al, and Cr. The higher concentrations of transition metals at the interface between the coarse and fine saprolite is due to vertical transfers and precipitation at the base of the weathering profile. In such a lateritic environment, the Pt-bearing chromite grains are progressively dissolved and the platinum group minerals (PGM) are released in the weathering mantle with a preferential depletion of palladium with regard to platinum.

Keywords: Lateritic weathering, ultramafic rocks, mass balance calculation, Pt-chromite, New Caledonia
Lateritic weathering of rocks is one of the major processes that modify the earth’s surface and contribute to the geochemical cycle of elements (Marker et al. 1991; Compton et al. 2003). It affects numerous regions of the intertropical zone (Pedro 1968; Nahon 1986; Tardy and Roquin 1992; Tardy 1997), where long-term chemical weathering has led to the dissolution of primary minerals including heavy minerals like metal-bearing spinel that results in supergene formation and accumulation of secondary and residual minerals in profiles of 10 to 100 m in thickness. The mobilization and recycling of chemical elements during supergene weathering processes is complex, depending on dissolution kinetics of primary minerals, formation of secondary phases, Eh-pH conditions, mass transfers and co-precipitation and ionic exchanges between various minerals (Harris and Adams, 1966; Nesbitt 1979; Cramer and Nesbitt 1983; Nahon 1991; Nesbitt and Wilson 1992; Islam et al. 2002). We study here the chemical weathering of ultramafic rocks of New Caledonia and particularly the supergene dissolution of platinum-bearing chromite grains disseminated in the weathering profile to characterize the weathering processes of the parent rocks and the release mechanism of platinum group minerals (PGM) in the weathering profile.

More than one-third of the area of New Caledonia is covered by ultramafic rocks, which are remnants of a Late Eocene overthrust belt now dissected by erosion (Paris 1981). These ultramafic rocks are deeply weathered, resulting in progressive leaching of Mg and Si and relative concentration of Fe and other metals in thick weathering profiles (Trescases 1975; Latham 1986). Ultramafic rocks are mainly harzburgite or lherzolite, which can exhibit serpentinization at their base; these rocks are also intercalated with dunite layers (Trescases 1975). Chromium spinel (Mg, Fe²⁺)(Cr, Al, Fe³⁺)₂O₄ is present interstitially up to 3% (Guillon 1975) or in pure chromite deposits of the ophiolitic harzburgites (Cassard et al. 1981; Augé 1985; Leblanc 1995). This primary chromite is
subsequently mobilized in eluvial and alluvial deposits. Significant proportions of this mineral have been previously reported in New Caledonian ophiolitic complexes, but the secondary supergene evolution of chromium spinel is poorly understood (Phan and Routhier 1964). A petrological and geochemical study of lateritic weathering profiles can contribute to improve this knowledge, and more particularly to address the specific metallogenic issue of the supergene weathering processes of platinum-bearing chromite.

GEOLOGICAL SETTING

The study area is located in the downslope part of the Pirogues River drainage basin in Southern New Caledonia (Fig. 1). The lithological units of this area consist of ultramafic rocks as cumulates of dunite, wehrlite and pyroxenite, and also harzburgites, which are serpentinized and cross-cut by pyroxenite dikes (Fig. 1). Platiniferous chromite are primarily concentrated either as stratiform accumulations in dunite and wehrlite or are disseminated in pyroxenite dikes and wehrlite. Most of the PGM are included in chromite (Augé and Maurizot 1995). Chromite forms thin schlieren and layers a few centimeters thick and a meter or so long in dunite and wehrlite cumulates. Irregular concentrations of massive chromite form ore in the pyroxenite dikes (Augé and Maurizot 1995). Chromite is crystallized in between large grains of pyroxene. Massive chromitite was also observed in the different horizons of the weathering profiles.

The ultramafic rocks are deeply weathered under the influence of a warm and humid climate characterized by a mean annual rainfall of 1700 mm with a wet season occurring from December to August. The ultramafic bedrock is generally overlain by a thick lateritic weathering mantle consisting typically from the base to the top (Trescases 1975; Besset 1980; Latham 1986; Llorca 1986) of: a coarse saprolite comprised of parent rock blocks, surrounded by weathering cortices; a fine saprolite where the silicates are totally hydrolyzed but the parent rock structure is preserved; a mottled zone composed of some
ferruginous nodules embedded in a goethitic matrix crossed by numerous millimeter-scale bioturbations; a soft nodular layer consisting mainly of millimeter to centimeter size nodules and pisoliths, and ferricrete fragments embedded in a red goethitic ferruginous matrix; a ferricrete exhibiting a massive, alveolar, and/or pisolitic structure, which is essentially composed of goethite and hematite. The parental structures are generally blurred in the ferruginous upper horizons.

Natural weathering profiles exposed in deep gullies (also locally called “lavakas”) have been described and sampled in situ (Fig. 2) for mineralogical and geochemical studies.

MATERIAL AND METHODS

Fourteen samples of parent rock, laterite and soil were collected in situ for measuring the bulk and grain density (Figs. 2 and 3). These samples were analyzed to determine (1) major element composition by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES) and (2) trace and precious metals by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). For ICP-AES analyses, the samples were crushed and finely ground (≤ 75 µm) after oven drying to be decomposed with 10 times their weight of a composite flux comprising 65% metaborate and 35% tetraborate according to the ME-ICP93 analytical procedure developed by the Australian Laboratory Services (ALS, Chemex). The resulting melts were dissolved in dilute nitric acid. Repeated fusion of finely ground powder was necessary to obtain complete decomposition of chromite, particularly for the samples containing coarser-grained chromite. For ICP-MS analysis of precious metals (Pt and Pd) each ground sample was fused with a mixture of lead oxide, sodium carbonate, borax and silica, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead according to the PGM-MS23 analytical procedure developed by ALS Chemex, Australia. After cupellation the bead was dissolved in nitric and hydrochloric acid.
acids and the solution diluted to volume. Detection limits for Pd and Pt are 1 and 0.5 ppb, respectively. X-ray diffraction (XRD) determinations were also processed on each sample. Semi-quantitative proportions of minerals were deduced by the measurements of the surface of main peaks in XRD spectra.

Three samples of 50 kg were also collected in the friable layers of the weathering profile (fine saprolite, mottled zone and nodular layer). The samples were carefully washed, sifted to 1 mm and panned in order to separate out the heaviest particles. Chromite grains were separated from the other heavy minerals under a binocular microscope for morphological examination by scanning electron microscopy (SEM). After the SEM observation, chromite grains were mounted with resin and polished sections were prepared for electron microprobe analyses. Microanalyses of chromite grains were obtained using a Cameca SX 100 electron microprobe with an acceleration potential of 15 keV, a beam current of 50 nA and counting time of 10 s. The standards used were olivine for Mg, albite for Al, hematite for Fe, orthoclase for Si, Cr$_2$O$_3$ for Cr, MnTiO$_2$ for Mn and Ti, NiO-466.6 for Ni, ZnO for Zn and synthetic Co for Co.

RESULTS AND DISCUSSION

Physical and geochemical characterization

Density and porosity change. The weathering profile is developed from a wehrlite type ultramafic rock (40-70% olivine, 30-45% antigorite and 10-20% diopside), and its thickness is up to 4 meters. At the base of the profile (Fig. 2), the greenish-black parent rock (-470 to -400 cm) changes to a brownish coarse saprolite (-400 to 290 cm) that preserves parental structure and texture. Above (-290 to -100 cm) a yellow fine saprolite is overlain by a red mottled zone (-100 to -60 cm) and a colluvial nodular horizon close to the ground surface (Fig. 2), which is composed of ferruginous nodules, pisolites and fragments of a previous ferricrete.
Rock porosity is an important physical parameter of weathering mantles as it controls soil, water and air circulation, and thus permeability. Therefore, pores are a first order factor controlling erosion and mass movement processes. In the profile studied, the bulk density decreases from an average 2.37 g.cm\(^{-3}\) in the fresh wehrlite to 1.32 g.cm\(^{-3}\) in the coarse saprolite, 0.93 g.cm\(^{-3}\) and 1.13 g.cm\(^{-3}\) in the fine saprolite and mottled zone, respectively, and 1.71 g.cm\(^{-3}\) in the nodular horizon (Fig. 3a and Table 1). The grain density slightly increases from an average 3.05 g.cm\(^{-3}\) in the parent rock and the coarse saprolite, 3.58 g.cm\(^{-3}\) in the fine saprolite and 3.64 g.cm\(^{-3}\) in the mottled zone to 3.67 g.cm\(^{-3}\) in the nodular horizon (Fig. 3b and Table 1). The porosity change is thus very important, from 22% in the fresh wehrlite to 56%, on average, in the coarse saprolite, 74% in the fine saprolite, 69% in the mottled zone, and 53% in the upper nodular layer (Fig. 3c and Table 1).

Petrologic and geochemical patterns. The XRD mineralogical characterization of each horizon composing the weathering profile indicates the presence of olivine, antigorite, diopside and goethite with accessory chromite and enstatite. In the saprolites, the silicates are progressively replaced by goethite, olivine being the first affected by weathering. The coarse saprolite is composed of 30% olivine (up to 50% in the parent rock), 40% antigorite (35% in the parent rock), 15% diopside, 15% goethite. The base of the fine saprolite is composed of 15% olivine, 5% antigorite, 10% diopside (15% in the parent rock) and 50% goethite. At the top of the fine saprolite olivine, antigorite and diopside are completely replaced by goethite, which reaches 100%. The mottled zone and the nodular layer are essentially composed of goethite with accessory hematite and chromite.

The geochemical analyses of the unweathered wehrlite indicate, on average, 39.6 wt.% SiO\(_2\), and 34.70 wt.% MgO, and 19.3 wt.% Fe\(_2\)O\(_3\) (Table 1). Silica decreases to 21.2 wt.% at the top of the coarse saprolite and MgO to 7.1 wt.%. Iron (III) oxide

Traore et al., 2007
contents increase, on average, from 19.3 wt.% to 45.2 wt.% Alumínium and chromium contents do not significantly change between parent wehrlite and coarse saprolite: on average, 0.6 – 0.7 wt.% Al₂O₃, 1.5 – 2.3 wt.% Cr₂O₃. The transition metal contents increase, on average, from 1.97 g.kg⁻¹ to 4.40 g.kg⁻¹ for Mn, 0.23 g.kg⁻¹ to 0.48 g.kg⁻¹ for Co, and 0.34 g.kg⁻¹ to 0.53 g.kg⁻¹ for Ni (Table 1).

The coarse saprolite is progressively transformed into a fine saprolite, in which the texture and the structure of the parent rock are still preserved. On average, the geochemical analyses of the fine saprolite indicate 3.4 wt.% SiO₂, 0.9 wt.% Al₂O₃, 77 wt.% Fe₂O₃, 3.3 wt.% Cr₂O₃, 0.04 wt.% CaO, 0.85 wt.% MgO, 8.3 g.kg⁻¹ Mn, 2.8 g.kg⁻¹ Co, and 8.2 g.kg⁻¹ Ni (Table 1).

Toward the top of the profile, the fine saprolite changes to a bioturbated-mottled laterite in which the original rock structure is no longer preserved. The chemical composition is similar to the one analyzed in the upper part of the fine saprolite except for decreased Co content (Table 1).

Mass balance calculations

Mass balance calculations related to weathering processes require the application of rigorous means to estimate losses or gains based on a thorough petrological study (Millot and Bonifas 1955; Gresens 1967; Brimhall and Dietrich, 1986; Colin et al. 1992, 1993; Beauvais and Colin 1993). The parental rock structures are well preserved in the saprolite suggesting that weathering processes have preserved the original volume. Based on the assumption that the volume has not varied between bedrock (-470 cm) and the top of the fine saprolite (-110 cm), isovolume mass-balance calculations can be applied to quantify mass transfers induced by the transformation of parent-rock into saprolite (Millot and Bonifas 1955). Numerous authors have mathematically formalized mass balance calculations (Gresens 1967; Brimhall and Dietrich 1986) by a functional...
form of the constitutive relationships between the chemical compositions of parent and
weathered material, their bulk densities, and volumes. The net gains and losses of
chemical constituents are calculated from the following equation (Brimhall and Dietrich
1986):

\[K_j = \left[\frac{C_{jw} \times \rho_{jw}}{C_{jp} \times \rho_{jp}} \right] - 1 \times 100, \]

(1)

where \(K_j \) is the gain and/or loss factor of chemical element \(j \); \(C_{jw} \) and \(C_{jp} \) are the
chemical element \(j \) concentrations (expressed in g.kg\(^{-1}\) for Si, Al, Fe, Ca, Mg and Cr, or
mg.kg\(^{-1}\) for Mn, Co and Ni) in the weathered layer, \(w \), and the parent material, \(p \),
respectively; and \(\rho_{jw} \) and \(\rho_{jp} \) are bulk densities of the weathered material, \(w \), and the
parent material, \(p \), respectively (expressed in g.cm\(^{-3}\)).

The total mass (\(m_{jw} \)) of each element \(j \) gained or lost during the weathering
process is calculated from the following equation (Colin et al. 1993):

\[m_{jw} = C_{jp} \times \rho_{jp} \times V_p \times K_{jw}, \]

(2)

where \(V_p \) is the volume of the parent rock (\(V_p = 1 \) m\(^3\)), \(K_{jw} \) is the gain and/or loss factor
of chemical element \(j \) in the weathered layer, \(w \), calculated from the equation (1), and
\(C_{jp}, \rho_{jp} \) and \(m_{jw} \) are expressed in kg.ton\(^{-1}\), ton.m\(^{-3}\) and kg.m\(^{-3}\), respectively.

Mass balance calculations show that 96% Si, 99% Mg, 94% Ca have been depleted in the
fine saprolite (Table 2a and Fig. 4) that corresponds, on average, to mass transfers of -426 kg
Si, -488 kg Mg and -5.4 kg Ca per cubic meter of weathered parent rock (Table 2b). This is
accompanied, on average, by 47% loss of Al and 16% loss of Cr, i.e., -4 kg.m\(^{-3}\) Al and -4

Traore et al., 2007
kg.m\(^{-3}\) Cr, the highest values being recorded at the base of the fine saprolite (Table 2 and Figs. 4a and 4c). Iron, Mn, and Co contents are enriched at the top of the coarse saprolite only by 4.7\% (+17.2 kg.m\(^{-3}\)), 8\% (+0.39 kg.m\(^{-3}\)), and 9\% (+0.05 kg.m\(^{-3}\)), respectively, while Ni is slightly depleted by -10\% (-0.69 kg.m\(^{-3}\)) (Fig. 4 and Table 2). At the base of the fine saprolite, the enrichment rates strongly increase by 30\% (+110 kg.m\(^{-3}\)) for Fe, 45\% (+3.18 kg.m\(^{-3}\)) for Ni, 54\% (+2.61 kg.m\(^{-3}\)) for Mn, and 458\% (+2.35 kg.m\(^{-3}\)) for Co. At the top of the fine saprolite, the enrichment rates are 38\% (+142 kg.m\(^{-3}\)) for Fe, 81\% (+3.9 kg.m\(^{-3}\)) for Mn and 312\% (+1.6 kg.m\(^{-3}\)) for Co, while Ni is depleted by -20\% (-1.38 kg.m\(^{-3}\)) (Table 2a and 2b).

The sharp decrease of Si, Mg and Ca contents (from parent rock to saprolite) reflects the congruent weathering of primary silicates (Eggleton et al. 1987; Nesbitt and Wilson 1992; Islam et al 2002). The weathering creates high porosity and resultant improved drainage conditions if pore spaces are interconnected (Trescases 1975; Latham 1986; Marker et al. 1991). The Fe-enrichment at the transition between coarse and fine saprolite (Fig. 4a and Table 2) is due to relatively short vertical migrations of iron in the weathering profile that has led to goethite formation, which may have trapped transition metals such as Mn, Co and Ni (Millot and Bonifas 1955; Tardy and Roquin 1992; Beauvais and Colin 1993; Beauvais and Roquin 1996).

The primary host minerals for Ni in the ultramafic rocks are olivine, serpentine and accessory pyroxene (Zeissink 1969; Trescases 1975; Besset 1980; Colin et al. 1990; Gaudin, 2002). During the weathering of these parent minerals in strong oxidizing conditions, Ni is mobilized and enriched by co-precipitation with secondary Fe and Mn oxides at the transition between the coarse and fine saprolite (Fig. 4c and Table 2) as previously shown (Schellmann 1981; Golightly 1981; Elias et al. 1981; Trescases 1975; Reimann and Caritat 1998).
Manganese enrichment in the fine saprolite (on average, +60%), as compared to its content in the parent rock (Table 2a), can be explained by significant vertical and/or lateral transfers of Mn, which is released as Mn$^{2+}$ in the saturated zone of the deeper saprolite (Golightly 1979). Vertical transfers may be due to the leaching of Mn from the near-surface part of the profile under conditions of low pH and high CO$_2$ activity. These environmental conditions favor reduction of Mn$^{4+}$ to Mn$^{2+}$ (Golightly 1979; Beauvais et al. 1987). Colloidal Mn$^{2+}$ complexes are highly mobile and can be transported in the soils over long distances (Krauskopf 1979; Marker et al. 1991). As soon as Mn-bearing solutions reach the lower part of the weathering profile, rising pH due to silicate hydrolysis and increased concentration of the solution above the saprolite, are likely to result in the oxidation of Mn$^{2+}$ and precipitation of Mn oxides from the colloidal solution (Trescases 1975; Golightly 1979; Llorca 1986; Marker et al. 1991).

The behavior of Co is also controlled by physical-chemical properties of the downward-migrating solutions (Marker et al. 1991). Cobalt is adsorbed by negatively charged Mn$^{4+}$ colloids and/or incorporated into Mn oxides (Burns 1976; Manceau et al. 1987; Llorca and Monchoux 1991; Llorca 1993). Precipitation of Co at the base of the profile, where pH is higher, is more effective, because the solubility product of Co hydroxide is lower than that of Mn hydroxide (Trescases 1975; Schellmann 1978; Golightly 1981). This property can explain the higher enrichment factor of Co (+450%) compared to Mn (+54%) or Ni (+45%) in the lower cementation zone (Figs. 4c and d, Table 2) (Marker et al. 1991).

The Cr-bearing minerals in the ultramafic rocks are mainly chromite and accessory silicate minerals. Chromium-bearing silicate minerals are, however, depleted in the upper saprolite. Some Cr may be leached downward in the form of Cr(OH)$_3$ in alkaline environments (Marker et al. 1991). Chromium within chromite is generally considered immobile in supergene environments (Trescases 1975; Schellmann 1978; Becquer et al. 2003). However, recent
thermodynamic and field studies have shown that chromite is soluble in lateritic environments (Fendorf 1995), suggesting that Cr in laterites derived from the weathering of ultramafic rocks may be depleted from the profile. As chromite is the main host mineral of aluminum in the wehrlite, its solubility also explains the depletion of Al in the profile.

Supergene dissolution of chromite

The chemical compositions of chromite from different samples of Pt-rich chromitite of the Pirogues site are plotted in Figure 5, together with disseminated chromite from the cumulate series, and chromitite from previously studied mantle deposits (Augé and Maurizot 1995), as, for example, those from the Tiebaghi massif in northwestern New Caledonia, in which the chromite has a very constant composition (high Cr\(^{3+}\) (55.5-63.5 wt.% Cr\(_2\)O\(_3\)) and low Fe\(^{3+}\) (1.5-4.3 wt.% Fe\(_2\)O\(_3\))). Chromite disseminated in mineralized cumulates is slightly impoverished in Cr (Fig. 5). Platinum-bearing chromite concentrations in the cumulate series of the Pirogues area differ significantly from those of mantle chromitite in having relatively low Cr\(^{3+}\) (40-46 wt.% Cr\(_2\)O\(_3\)) and high Fe\(^{3+}\) (10-17 wt.% Fe\(_2\)O\(_3\)) (Fig. 5). No significant difference was observed between chromitite of pyroxenite dikes and chromitite of cumulates.

The platinum-bearing chromite in the parent rock and coarse saprolite is euhedral (Fig. 6a), with surfaces that may represent small primary dissolution cracks (Fig. 6b). The progressive weathering of chromite is illustrated in Figure 6. In the fine saprolite, where the lowest bulk densities and the highest porosities were measured (Fig. 3 and Table 1), the dissolution of chromite starts along the primary cracks and increases until forming a network of etching pits of sub-micrometric size (Fig. 6c and 6d). This effectively corresponds to the highest losses of Cr (Fig. 4c and Table 2). In the mottled zone, residual chromite grains with smooth edges are embedded in ferruginous aggregates and/or pisolites (Fig. 6e), which are essentially composed of goethite. The dissolution front increases in the chromite by widening of microcracks and fissures hosting weathering solutions (Fig. 6f). The supergene dissolution
process leads to the dislocation of chromite crystals in the superficial layers (Fig. 6g and 6h). Chromite grain dissolution in supergene environments is driven by an hydrolysis process that produces \(\text{Cr(OH)}_3 \) (Cooper 2002) via:

\[
\text{FeCr}_2\text{O}_4 + 2\text{H}_2\text{CO}_3 + 2\text{H}_2\text{O} = \text{Fe}^{2+}_{\text{aq}} + 2\text{Cr(OH)}_3 + 2\text{HCO}_3^- \quad (3)
\]

The production of \(\text{Cr(OH)}_3 \) requires moist, slightly reduced conditions to keep Fe(II) ions in solution, such as those prevailing in the fine saprolite, which is characterized by an unconnected fine porosity and poor drainage. The \(\text{Cr(OH)}_3 \) produced can be adsorbed to the surface of the crystal structure of iron and/or manganese oxyhydroxides (McKenzie 1977; Manceau and Charlet 1992; Fendorf 1995).

The dissolution reaction of \(\text{Cr(OH)}_3 \) to produce soluble Cr(III) ions is represented by:

\[
\text{Cr(OH)}_3 + 3\text{H}^+ = \text{Cr}^{3+}_{\text{aq}} + 3\text{H}_2\text{O} \quad (4)
\]

This reaction is possible only under strongly acidic conditions with pH values lower than 4 (Fendorf 1995; Cooper 2002). Such conditions prevail at the top of lateritic profiles, which is often rich in organic matter.

The poorly-aerated chromite-rich ferruginous aggregates can also undergo oxidation-reduction conditions that favor the hydrolysis of Cr(III) into \(\text{Cr(OH)}_3 \) (Cooper 2002). The dissolution of chromite ultimately leads to the release of PGM initially included in chromite crystals.

Residual origin of platinum

Decoupling of platinum group elements, Pt and Pd, and variation of the ratio Pt/Pd, are characteristic of the behavior of the PGE in supergene environments (Prichard and Lord 1994; Traore et al., 2007)
Evans et al. 1994; Oberthür et al. 2003). Between the bedrock and the upper part of the fine saprolite, the Pt/Pd ratio is as high as the chromium is depleted (Fig. 7 and Tables 1 and 2). The increase of Pt/Pd in the weathering profile reflects the preferential release of palladium with regard to platinum (Varajao et al. 2000). Figure 7 also suggests that PGM could be released concomitant with chromite dissolution and also, that the supergene dissolution of Pt-bearing chromite and/or newly released PGM lead to a preferential depletion of Pd with regard to Pt. The specific behavior of PGM in the lateritic weathering profile is addressed separately (Traore et al. 2007).

CONCLUSION

Supergene dissolution of platinum-bearing chromite has been characterized in a lateritic weathering profile from New Caledonia. Based on mass balance calculations, the results document the spatial redistribution of chemical elements during chemical weathering processes. Silicon, Mg and Ca are depleted entirely from the weathering profile resulting from the chemical weathering of olivine, pyroxene and serpentine. The residual Fe forms iron hydroxides, often crystallized into goethite, which can eventually trap other transition metals. Manganese, Co and Ni form poorly crystallized secondary minerals such as Mn-asbolanes and/or co-precipitate with iron hydroxides. The Cr-bearing silicates are dissolved and Cr is leached out of the profile. Chromite dissolution induces Cr depletion and Al removal. This investigation illustrates the decoupling of PGE and Cr content during the lateritic weathering of Pt-bearing chromite and suggests that the platinum mineralization is globally residual. The chromite dissolution may effectively contribute to the release of PGM in the profile with a preferential depletion of palladium with regard to platinum.

ACKNOWLEDGEMENTS

This work is a contribution IRD-UMR161-CEREGE. Dr. P. Maurizot is thanked for introducing us to the study area. Michel Cathelineau, Gaëlle Bouichet, Marc Brouand and

Traore et al., 2007
Philippe Larqué are gratefully acknowledged for their help during mineralogical investigations. J. Butcher, D. Chardon, V. Chevillotte, V. Combier, A. Paugam, J. Perrier, N. Perrier and B. Robineau are also thanked for their help during fieldwork. Dr. Giorgio Garuti, Dr. Anthony Velbel and an anonymous reviewer are thanked for their helpful review of the manuscript.
REFERENCES CITED

Traore et al., 2007

Traore et al., 2007

Traore et al., 2007
Figure 1. (a) Geological map and location of studied area (after Augé and Maurizot, 1995). The black star shows the location of the studied weathering profile (Fig. 2). (b) Inset of the main Island of New Caledonia with its ultramafic massifs and location of (a) by the black rectangle.

Figure 2. Weathering profile log from a crosscut into a natural gully (“lavaka”) and the location of analyzed samples (white squares), the numbers of which being in italics.

Figure 3. (a) Bulk density, (b) Grain density and (c) Porosity variation along the profile.

Figure 4. Results of the geochemical mass balance calculation along the profile.

Figure 5. Chemical compositions of chromite from PGE-rich chromitite of the Pirogues River mineralization (black circles) and disseminated chromite in cumulate hosting the mineralization (grey circles). Light gray circles correspond to mantle chromitite from Tiébaghi (after Augé, 1985).

Figure 6. S.E.M. photomicrographs of the progressive weathering of chromite (a) euhedral grain of primary chromite in the coarse saprolite, (b) detail of a primary chromite grain surface showing dissolution cracks, (c) euhedral grain of chromite affected by a microdrain network in the red laterite, (d) etching dissolution pits of a chromite grain, (e) residual chromite grain in a ferruginous cortex, (f) detail of dissolution features of a chromite, (g) small size chromite grain disseminated in a pisolite, (h) detail of (g).

Figure 7. Comparison between the total mass transfer of Cr and Pt/Pd variation in the weathering profile.
TABLE 1. Physical and chemical characteristics of the parent rock, and the different layers of the weathering profile ($\rho_w =$ bulk density; $\rho_g =$ grain density).

TABLE 2. Results of (a) the mass balance factor (K) and (b) the total mass transfer (m) of chemical elements calculated from equation (1) and (2), respectively.
FIG. 1

Traore et al., 2007
FIG. 3

Traore et al., 2007
FIG. 4 Traore et al., 2007
FIG. 5

Traore et al., 2007
FIG. 6
FIG. 7

Traore et al., 2007
<table>
<thead>
<tr>
<th>Sample n°</th>
<th>PG34</th>
<th>PG35</th>
<th>PG32</th>
<th>PG31</th>
<th>PG36</th>
<th>PG37</th>
<th>PG38</th>
<th>PG39</th>
<th>PG41</th>
<th>PG42</th>
<th>PG43</th>
<th>PG44</th>
<th>PW12</th>
<th>PW13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (cm)</td>
<td>-470</td>
<td>-420</td>
<td>-380</td>
<td>-300</td>
<td>-270</td>
<td>-240</td>
<td>-210</td>
<td>-180</td>
<td>-140</td>
<td>-110</td>
<td>-95</td>
<td>-70</td>
<td>-25</td>
<td>0</td>
</tr>
<tr>
<td>ρ_w (g.cm$^{-3}$) ± 0.1</td>
<td>2.38</td>
<td>2.36</td>
<td>1.68</td>
<td>0.97</td>
<td>0.91</td>
<td>0.91</td>
<td>0.95</td>
<td>0.96</td>
<td>0.93</td>
<td>0.93</td>
<td>0.98</td>
<td>1.28</td>
<td>1.69</td>
<td>1.73</td>
</tr>
<tr>
<td>ρ_g (g.cm$^{-3}$) ± 0.1</td>
<td>3.06</td>
<td>3.04</td>
<td>3.02</td>
<td>3.11</td>
<td>3.39</td>
<td>3.47</td>
<td>3.45</td>
<td>3.70</td>
<td>3.65</td>
<td>3.60</td>
<td>3.68</td>
<td>3.65</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>22.22</td>
<td>22.37</td>
<td>44.37</td>
<td>73.16</td>
<td>76.30</td>
<td>72.17</td>
<td>74.86</td>
<td>74.52</td>
<td>72.78</td>
<td>65.22</td>
<td>53.70</td>
<td>53.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$ (wt%) ± 0.01</td>
<td>39.48</td>
<td>39.81</td>
<td>34.65</td>
<td>21.27</td>
<td>6.00</td>
<td>4.08</td>
<td>3.32</td>
<td>2.99</td>
<td>2.20</td>
<td>2.07</td>
<td>2.09</td>
<td>1.88</td>
<td>2.10</td>
<td>1.90</td>
</tr>
<tr>
<td>Al$_2$O$_3$ (wt%) ± 0.01</td>
<td>0.68</td>
<td>0.58</td>
<td>0.56</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>1.09</td>
<td>1.02</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>4.30</td>
<td>4.20</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ (wt%) ± 0.01</td>
<td>19.89</td>
<td>18.86</td>
<td>33.78</td>
<td>75.11</td>
<td>76.14</td>
<td>77.46</td>
<td>77.33</td>
<td>78.36</td>
<td>78.49</td>
<td>75.82</td>
<td>78.01</td>
<td>76.59</td>
<td>76.59</td>
<td></td>
</tr>
<tr>
<td>CaO (wt%) ± 0.01</td>
<td>0.34</td>
<td>0.36</td>
<td>0.14</td>
<td>0.14</td>
<td>0.07</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO (wt%) ± 0.01</td>
<td>34.36</td>
<td>35.19</td>
<td>22.97</td>
<td>7.17</td>
<td>1.47</td>
<td>1.26</td>
<td>0.67</td>
<td>0.60</td>
<td>0.65</td>
<td>0.49</td>
<td>0.42</td>
<td>0.38</td>
<td>0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>Cr$_2$O$_3$ (wt%) ± 0.01</td>
<td>1.54</td>
<td>1.45</td>
<td>1.82</td>
<td>2.88</td>
<td>2.14</td>
<td>3.56</td>
<td>3.84</td>
<td>3.62</td>
<td>4.06</td>
<td>3.76</td>
<td>4.85</td>
<td>4.42</td>
<td>2.05</td>
<td>2.01</td>
</tr>
<tr>
<td>LOI (wt%) ± 0.01</td>
<td>3.02</td>
<td>3.91</td>
<td>5.97</td>
<td>8.99</td>
<td>11.41</td>
<td>10.86</td>
<td>11.48</td>
<td>11.66</td>
<td>10.95</td>
<td>11.68</td>
<td>11.84</td>
<td>11.86</td>
<td>12.35</td>
<td>12.45</td>
</tr>
<tr>
<td>Total</td>
<td>99.31</td>
<td>100.16</td>
<td>99.89</td>
<td>99.21</td>
<td>98.87</td>
<td>97.01</td>
<td>96.84</td>
<td>97.00</td>
<td>97.42</td>
<td>97.34</td>
<td>97.47</td>
<td>97.53</td>
<td>97.67</td>
<td>97.38</td>
</tr>
<tr>
<td>Mn (mg/kg) ± 100</td>
<td>2012</td>
<td>1935</td>
<td>3483</td>
<td>5340</td>
<td>8127</td>
<td>8359</td>
<td>8359</td>
<td>7817</td>
<td>8282</td>
<td>9365</td>
<td>8514</td>
<td>9365</td>
<td>9690</td>
<td>9790</td>
</tr>
<tr>
<td>Co (mg/kg) ± 0.5</td>
<td>215</td>
<td>253</td>
<td>399</td>
<td>577</td>
<td>3140</td>
<td>2730</td>
<td>3080</td>
<td>3010</td>
<td>2670</td>
<td>2270</td>
<td>1950</td>
<td>1140</td>
<td>933</td>
<td>901</td>
</tr>
<tr>
<td>Ni (mg/kg) ± 5</td>
<td>2910</td>
<td>4040</td>
<td>4230</td>
<td>6430</td>
<td>11100</td>
<td>9190</td>
<td>8250</td>
<td>8820</td>
<td>6140</td>
<td>5960</td>
<td>6760</td>
<td>5530</td>
<td>5598</td>
<td>4802</td>
</tr>
<tr>
<td>Pd (µg/kg) ± 1</td>
<td>16</td>
<td>15</td>
<td>17</td>
<td>22</td>
<td>20</td>
<td>17</td>
<td>23</td>
<td>28</td>
<td>25</td>
<td>48</td>
<td>48</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pt (µg/kg) ± 0.5</td>
<td>227</td>
<td>206</td>
<td>204</td>
<td>647</td>
<td>527</td>
<td>440</td>
<td>483</td>
<td>497</td>
<td>442</td>
<td>683</td>
<td>497</td>
<td>241</td>
<td>225</td>
<td>196</td>
</tr>
</tbody>
</table>

TABLE 1

Traore et al., 2007
<table>
<thead>
<tr>
<th>Sample</th>
<th>PG34</th>
<th>PG35</th>
<th>PG32</th>
<th>PG31</th>
<th>PG36</th>
<th>PG37</th>
<th>PG38</th>
<th>PG39</th>
<th>PG41</th>
<th>PG42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (cm)</td>
<td>-470</td>
<td>-420</td>
<td>-380</td>
<td>-300</td>
<td>-270</td>
<td>-240</td>
<td>-210</td>
<td>-180</td>
<td>-140</td>
<td>-110</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th></th>
<th>Bedrock</th>
<th>Coarse saprolite</th>
<th>Fine saprolite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_Si (%)</td>
<td>K_Al (%)</td>
<td>K_Fe (%)</td>
</tr>
<tr>
<td>PG34</td>
<td>0.00</td>
<td>-0.01</td>
<td>-38.05</td>
</tr>
<tr>
<td>PG35</td>
<td>0.00</td>
<td>-15.42</td>
<td>-41.87</td>
</tr>
<tr>
<td>PG32</td>
<td>0.00</td>
<td>-5.98</td>
<td>7.85</td>
</tr>
<tr>
<td>PG31</td>
<td>0.00</td>
<td>4.99</td>
<td>-70.93</td>
</tr>
<tr>
<td>PG36</td>
<td>0.00</td>
<td>1.55</td>
<td>-52.81</td>
</tr>
<tr>
<td>PG37</td>
<td>0.00</td>
<td>-4.65</td>
<td>22.17</td>
</tr>
<tr>
<td>PG38</td>
<td>0.00</td>
<td>-6.64</td>
<td>16.58</td>
</tr>
<tr>
<td>PG39</td>
<td>0.00</td>
<td>37.66</td>
<td>2.61</td>
</tr>
<tr>
<td>PG41</td>
<td>0.00</td>
<td>16.69</td>
<td>31.00</td>
</tr>
<tr>
<td>PG42</td>
<td>0.00</td>
<td>-0.05</td>
<td>-166.95</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th></th>
<th>m_Si (kg.m(^{-3}))</th>
<th>m_Al (kg.m(^{-3}))</th>
<th>m_Fe (kg.m(^{-3}))</th>
<th>m_Ca (kg.m(^{-3}))</th>
<th>m_Mg (kg.m(^{-3}))</th>
<th>m_Mn (kg.m(^{-3}))</th>
<th>m_Cr (kg.m(^{-3}))</th>
<th>m_Ni (kg.m(^{-3}))</th>
<th>m_Co (kg.m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG34</td>
<td>0.00</td>
<td>-1.32</td>
<td>-21.98</td>
<td>0.29</td>
<td>7.67</td>
<td>0.00</td>
<td>-0.22</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>PG35</td>
<td>0.00</td>
<td>-3.58</td>
<td>28.87</td>
<td>109.95</td>
<td>146.56</td>
<td>0.67</td>
<td>-4.10</td>
<td>-0.16</td>
<td>0.00</td>
</tr>
<tr>
<td>PG32</td>
<td>0.00</td>
<td>-3.58</td>
<td>17.24</td>
<td>116.50</td>
<td>145.10</td>
<td>0.67</td>
<td>-5.32</td>
<td>-0.97</td>
<td>0.00</td>
</tr>
<tr>
<td>PG31</td>
<td>0.00</td>
<td>-5.34</td>
<td>169.95</td>
<td>156.50</td>
<td>145.10</td>
<td>0.67</td>
<td>-5.65</td>
<td>-2.91</td>
<td>0.00</td>
</tr>
<tr>
<td>PG36</td>
<td>0.00</td>
<td>-3.31</td>
<td>109.95</td>
<td>146.56</td>
<td>151.10</td>
<td>0.67</td>
<td>-5.44</td>
<td>-6.62</td>
<td>0.00</td>
</tr>
<tr>
<td>PG37</td>
<td>0.00</td>
<td>-4.44</td>
<td>151.10</td>
<td>145.10</td>
<td>141.58</td>
<td>0.67</td>
<td>-5.43</td>
<td>-1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>PG38</td>
<td>0.00</td>
<td>-1.22</td>
<td>116.50</td>
<td>145.10</td>
<td>141.58</td>
<td>0.67</td>
<td>-5.43</td>
<td>-1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>PG39</td>
<td>0.00</td>
<td>-2.81</td>
<td>145.10</td>
<td>141.58</td>
<td>141.58</td>
<td>0.67</td>
<td>-5.58</td>
<td>-1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>PG41</td>
<td>0.00</td>
<td>-4.63</td>
<td>141.58</td>
<td>141.58</td>
<td>141.58</td>
<td>0.67</td>
<td>-5.45</td>
<td>-1.30</td>
<td>0.00</td>
</tr>
<tr>
<td>PG42</td>
<td>0.00</td>
<td>-4.63</td>
<td>141.58</td>
<td>141.58</td>
<td>141.58</td>
<td>0.67</td>
<td>-5.45</td>
<td>-1.30</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TABLE 2

Traore et al., 2007