S. Blot, P. Depuydt, and K. Vandewoude, Measuring the impact of multidrug resistance in nosocomial infection, Current Opinion in Infectious Diseases, vol.20, issue.4, pp.391-396, 2007.
DOI : 10.1097/QCO.0b013e32818be6f7

M. Falagas and I. Bliziotis, Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?, International Journal of Antimicrobial Agents, vol.29, issue.6, pp.630-636, 2007.
DOI : 10.1016/j.ijantimicag.2006.12.012

I. Chopra, C. Schofield, and M. Everett, Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement, The Lancet Infectious Diseases, vol.8, issue.2, pp.133-139, 2008.
DOI : 10.1016/S1473-3099(08)70018-5

L. Rice, The clinical consequences of antimicrobial resistance, Current Opinion in Microbiology, vol.12, issue.5, pp.476-481, 2009.
DOI : 10.1016/j.mib.2009.08.001

T. Gandhi, D. Depestel, and C. Collins, Managing antimicrobial resistance in intensive care units, Critical Care Medicine, vol.38, pp.315-338, 2010.
DOI : 10.1097/CCM.0b013e3181e6a2a4

H. Boucher, G. Talbot, and J. Bradley, Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America, Clinical Infectious Diseases, vol.48, issue.1, pp.1-12, 2009.
DOI : 10.1086/595011

L. Rice, Progress and Challenges in Implementing the Research on ESKAPE Pathogens, Infection Control & Hospital Epidemiology, vol.10, issue.S1, pp.7-10, 2010.
DOI : 10.1111/j.1365-2958.1995.tb02268.x

H. Nikaido and J. Pagès, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiology Reviews, vol.36, issue.2, pp.340-363, 2012.
DOI : 10.1111/j.1574-6976.2011.00290.x

Z. Li, P. Plesiat, and H. Nikaido, The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria, Clinical Microbiology Reviews, vol.28, issue.2, pp.337-418, 2015.
DOI : 10.1128/CMR.00117-14

H. Tumah, Bacterial biocide resistance, J Chemother, vol.21, pp.5-15, 2009.

K. Hegstad, S. Langsrud, and B. Lunestad, Does the Wide Use of Quaternary Ammonium Compounds Enhance the Selection and Spread of Antimicrobial Resistance and Thus Threaten Our Health?, Microbial Drug Resistance, vol.16, issue.2, pp.91-104, 2010.
DOI : 10.1089/mdr.2009.0120

J. Delmar, S. Yu, and E. , Bacterial Multidrug Efflux Transporters, Annual Review of Biophysics, vol.43, issue.1, pp.93-117, 2014.
DOI : 10.1146/annurev-biophys-051013-022855

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769028

J. Blair, M. Webber, and A. Baylay, Molecular mechanisms of antibiotic resistance, Nature Reviews Microbiology, vol.4, issue.1, pp.42-51, 2015.
DOI : 10.1038/nrmicro3380

H. Venter, R. Mowla, and T. Ohene-agyei, RND-type drug e???ux pumps from Gram-negative bacteria: molecular mechanism and inhibition, Frontiers in Microbiology, vol.06, p.377, 2015.
DOI : 10.3389/fmicb.2015.00377

URL : http://doi.org/10.3389/fmicb.2015.00377

A. Davin-regli, M. Masi, and S. Bialek, Antimicrobial resistance and drug efflux pumps in Enterobacter and Klebsiella Efflux-mediated drug resistance in bac-teria: Mechanisms, regulation and clinical implications, 2016.

A. Davin-regli, J. Bolla, and C. James, Membrane Permeability and Regulation of Drug “Influx and Efflux” in Enterobacterial Pathogens, Current Drug Targets, vol.9, issue.9, pp.750-759, 2008.
DOI : 10.2174/138945008785747824

J. Pagès, C. James, and M. Winterhalter, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria, Nature Reviews Microbiology, vol.390, issue.12, pp.893-903, 2008.
DOI : 10.1016/S0969-2126(99)80055-0

J. Bolla, S. Alibert-franco, and J. Handzlik, Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria, FEBS Letters, vol.77, issue.11, pp.1682-1690, 2011.
DOI : 10.1016/j.febslet.2011.04.054

URL : https://hal.archives-ouvertes.fr/hal-01425039

P. Ruggerone, S. Murakami, and K. Pos, RND Efflux Pumps: Structural Information Translated into Function and Inhibition Mechanisms, Current Topics in Medicinal Chemistry, vol.13, issue.24, pp.3079-3100, 2013.
DOI : 10.2174/15680266113136660220

URL : http://hdl.handle.net/11584/99363

J. Dreier and P. Ruggerone, Interaction of antibacterial compounds with RND e???ux pumps in Pseudomonas aeruginosa, Frontiers in Microbiology, vol.6, p.660, 2015.
DOI : 10.3389/fmicb.2015.00660

T. Opperman and S. Nguyen, Recent advances toward a molecular mechanism of efflux pump inhibition, Frontiers in Microbiology, vol.96, issue.117, p.421, 2015.
DOI : 10.1073/pnas.96.13.7190

D. Jones, News and analysis: the antibacterial lead discovery challenge, Nat Rev Drug Discov, vol.9, pp.751-752, 2010.

A. Yamaguchi, R. Nakashima, and K. Sakurai, Structural basis of RND-type multidrug exporters, Frontiers in Microbiology, vol.6, p.327, 2015.
DOI : 10.3389/fmicb.2015.00327

K. Poole, K. Krebes, and C. Mcnally, Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon., Journal of Bacteriology, vol.175, issue.22, pp.7363-7372, 1993.
DOI : 10.1128/jb.175.22.7363-7372.1993

D. Ma, D. Cook, and M. Alberti, Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli, Molecular Microbiology, vol.12, issue.1, pp.45-55, 1995.
DOI : 10.1073/pnas.81.7.1966

D. Du, J. Voss, and Z. Wang, Abstract, Biological Chemistry, vol.396, issue.9-10, pp.1073-1082, 2015.
DOI : 10.1515/hsz-2015-0118

URL : https://hal.archives-ouvertes.fr/hal-00007529

J. Blair and L. Piddock, Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update, Current Opinion in Microbiology, vol.12, issue.5, pp.512-519, 2009.
DOI : 10.1016/j.mib.2009.07.003

W. Ogawa, M. Onishi, and R. Ni, Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae, Gene, vol.498, issue.2, pp.177-182, 2012.
DOI : 10.1016/j.gene.2012.02.008

J. Nowak, H. Seifert, and P. Higgins, Prevalence of eight resistance-nodulation-division efflux pump genes in epidemiologically characterized Acinetobacter baumannii of worldwide origin, Journal of Medical Microbiology, vol.64, issue.6, pp.630-635, 2015.
DOI : 10.1099/jmm.0.000069

N. Tsukagoshi and R. Aono, Entry into and Release of Solvents by Escherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump, Journal of Bacteriology, vol.182, issue.17, pp.4803-4810, 2000.
DOI : 10.1128/JB.182.17.4803-4810.2000

O. Lomovskaya, H. Zgurskaya, and M. Totrov, Waltzing transporters and 'the dance macabre' between humans and bacteria, Nature Reviews Drug Discovery, vol.43, issue.1, pp.56-65, 2007.
DOI : 10.1038/nrd2200

L. Piddock, Multidrug-resistance efflux pumps ??? not just for resistance, Nature Reviews Microbiology, vol.95, issue.8, pp.629-636, 2006.
DOI : 10.1038/nrmicro1464

K. Poole, Efflux-mediated antimicrobial resistance, Journal of Antimicrobial Chemotherapy, vol.56, issue.1, pp.20-51, 2005.
DOI : 10.1093/jac/dki171

URL : http://jac.oxfordjournals.org/cgi/content/short/56/1/20

C. Elkins and H. Nikaido, 3D structure of AcrB: the archetypal multidrug efflux transporter of Escherichia coli likely captures substrates from periplasm, Drug Resistance Updates, vol.6, issue.1, pp.9-13, 2003.
DOI : 10.1016/S1368-7646(03)00004-9

E. Pradel and J. Pages, The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter aerogenes, Antimicrobial Agents and Chemotherapy, vol.46, issue.8, pp.2640-2643, 2002.
DOI : 10.1128/AAC.46.8.2640-2643.2002

H. Nikaido, Multidrug efflux pumps of gram-negative bacteria., Journal of Bacteriology, vol.178, issue.20, pp.5853-5859, 1996.
DOI : 10.1128/jb.178.20.5853-5859.1996

D. Eaves, V. Ricci, and L. Piddock, Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica Serovar Typhimurium: Role in Multiple Antibiotic Resistance, Antimicrobial Agents and Chemotherapy, vol.48, issue.4, pp.1145-1150, 2004.
DOI : 10.1128/AAC.48.4.1145-1150.2004

F. Biot, M. Lopez, and T. Poyot, Interplay between Three RND Efflux Pumps in Doxycycline-Selected Strains of Burkholderia thailandensis, PLoS ONE, vol.56, issue.12, p.84068, 2013.
DOI : 10.1371/journal.pone.0084068.s001

A. Lee, W. Mao, and M. Warren, Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance, Journal of Bacteriology, vol.182, issue.11, pp.3142-3150, 2000.
DOI : 10.1128/JB.182.11.3142-3150.2000

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC94500

N. Tal and S. Schuldiner, A coordinated network of transporters with overlapping specificities provides a robust survival strategy, Proceedings of the National Academy of Sciences, vol.106, issue.22, pp.9051-9056, 2009.
DOI : 10.1073/pnas.0902400106

E. Hobbs, X. Yin, and B. Paul, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance, Proceedings of the National Academy of Sciences, vol.109, issue.41, pp.16696-16701, 2012.
DOI : 10.1073/pnas.1210093109

D. Du, Z. Wang, and N. James, Structure of the AcrAB???TolC multidrug efflux pump, Nature, vol.308, issue.7501, pp.512-515, 2014.
DOI : 10.1038/nature13205

Y. Shuster, S. Steiner-mordoch, and N. Alon-cudkowicz, A transpor-ter interactome is essential for the acquisition of antimicrobial resitance to antibiotics, Plos One, vol.11, p.152917, 2016.

S. Murakami, R. Nakashima, and E. Yamashita, Crystal structure of bacterial multidrug efflux transporter AcrB, Nature, vol.11, issue.6907, pp.587-593, 2002.
DOI : 10.1107/S0021889891004399

S. Murakami, R. Nakashima, and E. Yamashita, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.55, issue.7108, pp.173-179, 2006.
DOI : 10.1038/nature05076

M. Seeger, A. Schiefner, and T. Eicher, Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, pp.1295-1298, 2006.
DOI : 10.1126/science.1131542

R. Nakashima, K. Sakurai, and S. Yamasaki, Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket, Nature, vol.177, pp.565-569, 2011.
DOI : 10.1038/nature10641

H. Sjuts, A. Vargiu, and S. Kwasny, Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives, Proceedings of the National Academy of Sciences, vol.113, issue.13, pp.3509-3514, 2016.
DOI : 10.1073/pnas.1602472113

S. Levy, Active efflux, a common mechanism for biocide and antibiotic resistance, Journal of Applied Microbiology, vol.265, issue.s1, pp.65-71, 2002.
DOI : 10.1046/j.1365-2958.2000.02149.x

M. Alekshun and S. Levy, Molecular Mechanisms of Antibacterial Multidrug Resistance, Cell, vol.128, issue.6, pp.1037-1050, 2007.
DOI : 10.1016/j.cell.2007.03.004

M. Masi and J. Pagès, Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C ??? TolC Case, The Open Microbiology Journal, vol.7, issue.1, pp.22-33, 2013.
DOI : 10.2174/1874285801307010022

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

E. Rosenberg, D. Ma, and H. Nikaido, AcrD of Escherichia coli Is an Aminoglycoside Efflux Pump, Journal of Bacteriology, vol.182, issue.6, pp.1754-1756, 2000.
DOI : 10.1128/JB.182.6.1754-1756.2000

J. Aires and H. Nikaido, Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli, Journal of Bacteriology, vol.187, issue.6, pp.1923-1929, 2005.
DOI : 10.1128/JB.187.6.1923-1929.2005

S. Baugh and L. Piddock, Salmonella efflux pumps. Microbial Efflux Pumps, pp.163-173, 2013.

J. Hodgkinson, J. Gross, and Y. Baker, A new Pseudomonas quinolone signal (PQS) binding partner: MexG, Chem. Sci., vol.10, issue.4, pp.2553-2562, 2016.
DOI : 10.1039/C5SC04197J

J. Blair, H. Smith, and V. Ricci, Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design, Journal of Antimicrobial Chemotherapy, vol.70, issue.2, pp.424-431, 2015.
DOI : 10.1093/jac/dku380

C. Waters and B. Bassler, QUORUM SENSING: Cell-to-Cell Communication in Bacteria, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.319-346, 2005.
DOI : 10.1146/annurev.cellbio.21.012704.131001

W. Galloway, J. Hodgkinson, and S. Bowden, Quorum Sensing in Gram-Negative Bacteria: Small-Molecule Modulation of AHL and AI-2 Quorum Sensing Pathways, Chemical Reviews, vol.111, issue.1, pp.28-67, 2011.
DOI : 10.1021/cr100109t

S. Atkinson and P. Williams, Quorum sensing and social networking in the microbial world, Journal of The Royal Society Interface, vol.96, issue.9, pp.959-978, 2009.
DOI : 10.1073/pnas.96.9.4832

L. Antunes, R. Ferreira, and M. Buckner, Quorum sensing in bacterial virulence, Microbiology, vol.156, issue.8, pp.2271-2282, 2010.
DOI : 10.1099/mic.0.038794-0

S. Minagawa, H. Inami, and T. Kato, RND type efflux pump system MexAB-OprM of pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication, BMC Microbiology, vol.12, issue.1, p.70, 2012.
DOI : 10.1094/MPMI.2001.14.8.969

J. Pagès, S. Alibert-franco, and A. Mahamoud, Efflux Pumps of Gram-Negative Bacteria, a New Target for New Molecules, Current Topics in Medicinal Chemistry, vol.10, issue.18, pp.1848-1857, 2010.
DOI : 10.2174/156802610793176620

J. Pagès and L. Amaral, Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, pp.826-833, 2009.
DOI : 10.1016/j.bbapap.2008.12.011

M. Falagas, A. Grammatikos, and A. Michalopoulos, Potential of old-generation antibiotics to address current need for new antibiotics, Expert Review of Anti-infective Therapy, vol.6, issue.5, pp.593-600, 2008.
DOI : 10.1586/14787210.6.5.593

M. Yeaman and N. Yount, Mechanisms of Antimicrobial Peptide Action and Resistance, Pharmacological Reviews, vol.55, issue.1, pp.27-55, 2003.
DOI : 10.1124/pr.55.1.2

T. Ohene-agyei, R. Mowla, and T. Rahman, Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump, MicrobiologyOpen, vol.333, issue.6, pp.885-896, 2014.
DOI : 10.1002/mbo3.212

V. Aparna, K. Dineshkumar, and N. Mohanalakshmi, Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation, PLoS ONE, vol.17, issue.7, p.101840, 2014.
DOI : 10.1371/journal.pone.0101840.s001

Y. Takatsuka, C. Chen, and H. Nikaido, Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6559-6565, 2010.
DOI : 10.1073/pnas.1001460107

A. Vargiu and H. Nikaido, Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations, Proceedings of the National Academy of Sciences, vol.109, issue.50, pp.20637-20642, 2012.
DOI : 10.1073/pnas.1218348109

S. Nguyen, S. Kwasny, and X. Ding, Structure???activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors, Bioorganic & Medicinal Chemistry, vol.23, issue.9, pp.2024-2034, 2015.
DOI : 10.1016/j.bmc.2015.03.016

E. Otrebska-machaj, C. J. Handzlik, and J. , Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity, Frontiers in Microbiology, vol.1, issue.327, p.622, 2016.
DOI : 10.1038/ncomms1116

URL : https://hal.archives-ouvertes.fr/hal-01463003

A. Mahamoud, C. J. Baitiche, and M. , An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates, Microbiology, vol.157, issue.2, pp.566-571, 2011.
DOI : 10.1099/mic.0.045716-0

J. Handzlik, E. Szyma?ska, and S. Alibert, Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin, Bioorganic & Medicinal Chemistry, vol.21, issue.1, pp.135-145, 2013.
DOI : 10.1016/j.bmc.2012.10.053

URL : https://hal.archives-ouvertes.fr/hal-01425050

K. Nakayama, H. Kawato, and J. Watanabe, MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: Optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model, Bioorganic & Medicinal Chemistry Letters, vol.14, issue.2, pp.475-479, 2004.
DOI : 10.1016/j.bmcl.2003.10.060

P. Natarajan, S. Katta, and I. Andrei, Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics, Phytomedicine, vol.15, issue.3, pp.195-201, 2008.
DOI : 10.1016/j.phymed.2007.10.008

S. Hemaiswarya and M. Doble, Synergistic interaction of eugenol with antibiotics against Gram negative bacteria, Phytomedicine, vol.16, issue.11, pp.997-1005, 2009.
DOI : 10.1016/j.phymed.2009.04.006

V. Lorenzi, A. Muselli, and A. Bernardini, Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species, Antimicrobial Agents and Chemotherapy, vol.53, issue.5, pp.2209-2211, 2009.
DOI : 10.1128/AAC.00919-08

URL : https://hal.archives-ouvertes.fr/hal-00449646

O. Lomovskaya and K. Bostian, Practical applications and feasibility of efflux pump inhibitors in the clinic???A vision for applied use, Biochemical Pharmacology, vol.71, issue.7, pp.910-918, 2006.
DOI : 10.1016/j.bcp.2005.12.008

W. Watkins, Y. Landaverry, and R. Leger, The relationship between physicochemical properties, In vitro activity and pharmacokinetic profiles of analogues of diamine-Containing efflux pump inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.23, pp.4241-4244, 2003.
DOI : 10.1016/j.bmcl.2003.07.030

J. Kriengkauykiat, E. Porter, and O. Lomovskaya, Use of an Efflux Pump Inhibitor To Determine the Prevalence of Efflux Pump-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.49, issue.2, pp.565-570, 2005.
DOI : 10.1128/AAC.49.2.565-570.2005

K. Yoshida, K. Nakayama, and M. Ohtsuka, MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: Highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate, Bioorganic & Medicinal Chemistry, vol.15, issue.22, pp.7087-7097, 2007.
DOI : 10.1016/j.bmc.2007.07.039

J. Chevalier, A. Mahamoud, and M. Baitiche, Quinazoline derivatives are efficient chemosensitizers of antibiotic activity in Enterobacter aerogenes, Klebsiella pneumoniae and Pseudomonas aeruginosa resistant strains, International Journal of Antimicrobial Agents, vol.36, issue.2, pp.164-168, 2010.
DOI : 10.1016/j.ijantimicag.2010.03.027

URL : https://hal.archives-ouvertes.fr/hal-00601191

A. Mahamoud, J. Chevalier, and S. Alibert-franco, Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy, Journal of Antimicrobial Chemotherapy, vol.59, issue.6, pp.1223-1229, 2007.
DOI : 10.1093/jac/dkl493

URL : https://hal.archives-ouvertes.fr/hal-01425047

A. Mahamoud, C. J. Baitiche, and M. , An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates, Microbiology, vol.157, issue.2, pp.566-571, 2011.
DOI : 10.1099/mic.0.045716-0

J. Bohnert and W. Kern, Selected Arylpiperazines Are Capable of Reversing Multidrug Resistance in Escherichia coli Overexpressing RND Efflux Pumps, Antimicrobial Agents and Chemotherapy, vol.49, issue.2, pp.849-852, 2005.
DOI : 10.1128/AAC.49.2.849-852.2005

W. Kern, P. Steinke, and A. Schumacher, Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli, Journal of Antimicrobial Chemotherapy, vol.57, issue.2, pp.339-343, 2006.
DOI : 10.1093/jac/dki445

A. Schumacher, P. Steinke, and J. Bohnert, Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli, Journal of Antimicrobial Chemotherapy, vol.57, issue.2, pp.344-348, 2006.
DOI : 10.1093/jac/dki446

S. Pannek, P. Higgings, and P. Steinke, Multidrug efflux inhibition in Acinetobacter baumanii: comparison between 1-(1-naphthyl- methyl)-piperazine and phenyl-arginine-beta-naphthylamide

A. Schumacher, R. Trittler, and J. Bohnert, Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation, Journal of Antimicrobial Chemotherapy, vol.59, issue.6, pp.1261-1264, 2007.
DOI : 10.1093/jac/dkl380

M. Hannula and M. Hänninen, Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli, Journal of Medical Microbiology, vol.57, issue.7, pp.851-855, 2008.
DOI : 10.1099/jmm.0.47823-0

J. Handzlik, E. Szymanska, and J. Chevalier, Amine???alkyl derivatives of hydantoin: New tool to combat resistant bacteria, European Journal of Medicinal Chemistry, vol.46, issue.12, pp.5807-5816, 2011.
DOI : 10.1016/j.ejmech.2011.09.032

URL : https://hal.archives-ouvertes.fr/hal-01425032

M. Martins, S. Dastidar, and S. Fanning, Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections: mechanisms for their direct and indirect activities, International Journal of Antimicrobial Agents, vol.31, issue.3, pp.198-208, 2008.
DOI : 10.1016/j.ijantimicag.2007.10.025

A. Bailey, I. Paulsen, and L. Piddock, RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhibited by Chlorpromazine, Antimicrobial Agents and Chemotherapy, vol.52, issue.10, pp.3604-3611, 2008.
DOI : 10.1128/AAC.00661-08

L. Rodrigues, D. Wagner, and M. Viveiros, Thioridazine and chlorpromazine inhibition of ethidium bromide efflux in Mycobacterium avium and Mycobacterium smegmatis, Journal of Antimicrobial Chemotherapy, vol.61, issue.5, pp.1076-1082, 2008.
DOI : 10.1093/jac/dkn070

L. Amaral, M. Martins, and M. Viveiros, Promising Therapy of XDR-TB/MDR-TB with Thioridazine an Inhibitor of Bacterial Efflux Pumps, Current Drug Targets, vol.9, issue.9, pp.816-819, 2008.
DOI : 10.2174/138945008785747798

M. Viveiros, M. Martins, and I. Couto, New Methods for the Identification of Efflux Mediated MDR Bacteria, Genetic Assessment of Regulators and Efflux Pump Constituents, Characterization of Efflux Systems and Screening for Inhibitors of Efflux Pumps, Current Drug Targets, vol.9, issue.9, pp.760-778, 2008.
DOI : 10.2174/138945008785747734

Z. Aron and T. Opperman, Optimization of a novel series of pyranopyridine RND efflux pump inhibitors, Current Opinion in Microbiology, vol.33, pp.1-6, 2016.
DOI : 10.1016/j.mib.2016.05.007

B. Cinquin, L. Maigre, and E. Pinet, Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level, Scientific Reports, vol.14, p.17968, 2015.
DOI : 10.1107/S0909049509034049

URL : https://hal.archives-ouvertes.fr/hal-01463299