S. Levy, Active efflux, a common mechanism for biocide and antibiotic resistance, Journal of Applied Microbiology, vol.265, issue.s1, pp.65-71, 2002.
DOI : 10.1046/j.1365-2958.2000.02149.x

X. Li and H. Nikaido, Efflux-Mediated Drug Resistance in Bacteria, Drugs, vol.182, issue.8, pp.159-204, 2004.
DOI : 10.2165/00003495-200464020-00004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847397

O. Lomovskaya and M. Totrov, Vacuuming the Periplasm, Journal of Bacteriology, vol.187, issue.6, pp.1879-83, 2005.
DOI : 10.1128/JB.187.6.1879-1883.2005

K. Poole, Efflux-mediated antimicrobial resistance, Journal of Antimicrobial Chemotherapy, vol.56, issue.1, pp.20-51, 2005.
DOI : 10.1093/jac/dki171

URL : http://jac.oxfordjournals.org/cgi/content/short/56/1/20

F. Van-bambeke, Y. Glupczynski, and P. Plesiat, Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy, Journal of Antimicrobial Chemotherapy, vol.51, issue.5, pp.1055-65, 2003.
DOI : 10.1093/jac/dkg224

V. Koronakis, TolC - the bacterial exit duct for proteins and drugs, FEBS Letters, vol.5, issue.1
DOI : 10.1016/S0014-5793(03)01125-6

L. Piddock, Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria, Clinical Microbiology Reviews, vol.19, issue.2, pp.382-402, 2006.
DOI : 10.1128/CMR.19.2.382-402.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1471989

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

J. Pages, Role of Bacterial Porins in Antibiotic Susceptibility of Gram-Negative Bacteria, pp.41-59, 2004.
DOI : 10.1002/3527603875.ch3

I. Paulsen, Multidrug efflux pumps and resistance: regulation and evolution, Current Opinion in Microbiology, vol.6, issue.5, pp.446-51, 2003.
DOI : 10.1016/j.mib.2003.08.005

M. Saier and . Jr, Tracing pathways of transport protein evolution, Molecular Microbiology, vol.1511, issue.5
DOI : 10.1046/j.1365-2958.2003.03499.x

J. Eswaran, E. Koronakis, and M. Higgins, Three's company: component structures bring a closer view of tripartite drug efflux pumps, Current Opinion in Structural Biology, vol.14, issue.6, pp.741-748, 2004.
DOI : 10.1016/j.sbi.2004.10.003

C. Elkins and K. Beenken, Modeling the Tripartite Drug Efflux Pump Archetype: Structural and Functional Studies of the Macromolecular Constituents Reveal More Than Their Names Imply, Journal of Chemotherapy, vol.279, issue.31, pp.581-92, 2005.
DOI : 10.1016/j.bbrc.2004.07.140

S. Grkovic, M. Brown, and R. Skurray, Regulation of Bacterial Drug Export Systems, Microbiology and Molecular Biology Reviews, vol.66, issue.4, pp.671-701, 2002.
DOI : 10.1128/MMBR.66.4.671-701.2002

F. Van-bambeke, E. Balzi, and P. Tulkens, Antibiotic efflux pumps, Biochemical Pharmacology, vol.60, issue.4
DOI : 10.1016/S0006-2952(00)00291-4

J. Ramos, E. Duque, and M. Gallegos, Mechanisms of Solvent Tolerance in Gram-Negative Bacteria, Annual Review of Microbiology, vol.56, issue.1, pp.743-68, 2002.
DOI : 10.1146/annurev.micro.56.012302.161038

C. Dean, S. Narayan, and D. Daigle, Role of the AcrAB-TolC Efflux Pump in Determining Susceptibility of Haemophilus influenzae to the Novel Peptide Deformylase Inhibitor LBM415, Antimicrobial Agents and Chemotherapy, vol.49, issue.8, pp.3129-3164, 2005.
DOI : 10.1128/AAC.49.8.3129-3135.2005

P. Mygind, R. Fischer, and K. Schnorr, Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus, Nature, vol.437, issue.7061, pp.975-80, 2005.
DOI : 10.1038/nature04051

J. Wang, S. Soisson, and K. Young, Platensimycin is a selective FabF inhibitor with potent antibiotic properties, Nature, vol.50, issue.7091, pp.358-61, 2006.
DOI : 10.1016/0022-2836(71)90324-X

K. Lewis, In search of natural substrates and inhibitors of MDR pumps Efflux pumps: their role in antibacterial drug discovery, J Mol Microbiol Biotechnol Curr Med Chem, vol.3, issue.8, pp.247-54, 2001.

G. Kaatz, Bacterial efflux pump inhibition, Curr Opin Investig Drugs, vol.6, pp.191-199, 2005.

J. Pages, M. Masi, and J. Barbe, Inhibitors of efflux pumps in Gram-negative bacteria, Practical applications and feasibility of efflux pump inhibitors in the clinic?a vision for applied use, pp.382-391, 2005.
DOI : 10.1016/j.molmed.2005.06.006

F. Van-bambeke, J. Pages, and V. Lee, Inhibitors of Bacterial Efflux Pumps as Adjuvants in Antibiotic Treatments and Diagnostic Tools for Detection of Resistance by Efflux, Recent Patents on Anti-Infective Drug Discovery, vol.1, issue.2, 2006.
DOI : 10.2174/157489106777452692

V. Ricci, P. Tzakas, and A. Buckley, Ciprofloxacin-Resistant Salmonella enterica Serovar Typhimurium Strains Are Difficult To Select in the Absence of AcrB and TolC, Antimicrobial Agents and Chemotherapy, vol.50, issue.1, pp.38-42, 2006.
DOI : 10.1128/AAC.50.1.38-42.2006

M. Yan, O. Sahin, J. Lin, and Q. Zhang, Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure, Journal of Antimicrobial Chemotherapy, vol.58, issue.6, pp.1154-1163, 2006.
DOI : 10.1093/jac/dkl412

H. Tsubery, Y. H. Cohen, and S. , Neopeptide Antibiotics That Function as Opsonins and Membrane-Permeabilizing Agents for Gram-Negative Bacteria, Antimicrobial Agents and Chemotherapy, vol.49, issue.8, pp.3122-3130, 2005.
DOI : 10.1128/AAC.49.8.3122-3128.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196242

K. Nishino, T. Latifi, and E. Groisman, Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium, Molecular Microbiology, vol.67, issue.1, pp.126-167, 2006.
DOI : 10.1073/pnas.0408238102

S. Murakami, R. Nakashima, and E. Yamashita, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.55, issue.7108, pp.173-182, 2006.
DOI : 10.1038/nature05076

M. Seeger, A. Schiefner, and T. Eicher, Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, pp.1295-1303, 2006.
DOI : 10.1126/science.1131542

S. Schuldiner, Structural biology: The ins and outs of drug transport, Nature, vol.308, issue.7108, pp.156-163, 2006.
DOI : 10.1038/443156b

M. Mallea, C. J. Bornet, and C. , Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes, Microbiology, vol.144, issue.11, pp.3003-3012, 1998.
DOI : 10.1099/00221287-144-11-3003

D. Thanassi, L. Cheng, and H. Nikaido, Active efflux of bile salts by Escherichia coli., Journal of Bacteriology, vol.179, issue.8, pp.2512-2530, 1997.
DOI : 10.1128/jb.179.8.2512-2518.1997

T. Renau, R. Leger, and E. Flamme, Potentiate the Activity of the Fluoroquinolone Antibacterial Levofloxacin, Journal of Medicinal Chemistry, vol.42, issue.24, pp.4928-4959, 1999.
DOI : 10.1021/jm9904598

J. Kriengkauykiat, E. Porter, and O. Lomovskaya, Use of an Efflux Pump Inhibitor To Determine the Prevalence of Efflux Pump-Mediated Fluoroquinolone Resistance and Multidrug Resistance in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.49, issue.2, pp.565-70, 2005.
DOI : 10.1128/AAC.49.2.565-570.2005

E. Yu, J. Aires, and G. Mcdermott, A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study, Journal of Bacteriology, vol.187, issue.19, pp.6804-6819, 2005.
DOI : 10.1128/JB.187.19.6804-6815.2005

E. Yu, G. Mcdermott, and H. Zgurskaya, Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump, Science, vol.300, issue.5621, pp.976-80, 2003.
DOI : 10.1126/science.1083137

T. Renau, R. Leger, and L. Filonova, Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.16, pp.2755-2763, 2003.
DOI : 10.1016/S0960-894X(03)00556-0

T. Renau, R. Leger, and E. Flamme, Addressing the stability of C-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa, Bioorganic & Medicinal Chemistry Letters, vol.11, issue.5, pp.663-670, 2001.
DOI : 10.1016/S0960-894X(01)00033-6

W. Watkins, Y. Landaverry, and R. Leger, The relationship between physicochemical properties, In vitro activity and pharmacokinetic profiles of analogues of diamine-Containing efflux pump inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.23
DOI : 10.1016/j.bmcl.2003.07.030

T. Renau, R. Leger, and Y. R. , Peptidomimetics of Efflux Pump Inhibitors Potentiate the Activity of Levofloxacin in Pseudomonas aeruginosa, Bioorganic & Medicinal Chemistry Letters, vol.12, issue.5, pp.763-769, 2002.
DOI : 10.1016/S0960-894X(02)00006-9

K. Nakayama, H. Kawato, and J. Watanabe, Part 2: achieving activity in vivo through the use of alternative scaffolds MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa Part 3: Optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model Addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety, efflux pump inhibitors in Pseudomonas aeruginosa MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa, pp.4205-4213, 2003.

K. Yoshida, K. Nakayama, and Y. Yokomizo, MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: Exploration of aromatic substituents Quinolone derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes, Carbon-substituted analogues at the C-2 position, pp.1993-2004, 2006.
DOI : 10.1016/j.bmc.2006.08.037

J. Chevalier, S. Atifi, and A. Eyraud, Strains, Journal of Medicinal Chemistry, vol.44, issue.23, pp.4023-4029, 2001.
DOI : 10.1021/jm010911z

URL : https://hal.archives-ouvertes.fr/hal-00450930

S. Gallo, C. J. Mahamoud, and A. , 4-alkoxy and 4-thioalkoxyquinoline derivatives as chemosensitizers for the chloramphenicol-resistant clinical Enterobacter aerogenes 27 strain, International Journal of Antimicrobial Agents, vol.22, issue.3, pp.801-806, 2003.
DOI : 10.1016/S0924-8579(03)00215-2

J. Chevalier, J. Bredin, and A. Mahamoud, Inhibitors of Antibiotic Efflux in Resistant Enterobacter aerogenes and Klebsiella pneumoniae Strains, Antimicrobial Agents and Chemotherapy, vol.48, issue.3, pp.1043-1049, 2004.
DOI : 10.1128/AAC.48.3.1043-1046.2004

D. Ghisalberti, A. Mahamoud, and M. Baitiche, Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates, International Journal of Antimicrobial Agents, vol.27, issue.6, pp.565-574, 2006.
DOI : 10.1016/j.ijantimicag.2006.03.010

K. Nakayama, Y. Ishida, and M. Ohtsuka, MexAB-OprM specific 58

G. Kaatz, V. Moudgal, and S. Seo, Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus, International Journal of Antimicrobial Agents, vol.22, issue.3, pp.254-61, 2003.
DOI : 10.1016/S0924-8579(03)00220-6

J. Bohnert, W. Kern, A. Schumacher, P. Steinke, and J. Bohnert, Selected Arylpiperazines Are Capable of Reversing Multidrug Resistance in Escherichia coli Overexpressing RND Efflux Pumps, MexAB-OprM specific Enterobacteriaceae other than Escherichia coli. J Antimicrob efflux pump inhibitors in Pseudomonas aeruginosa. Part, pp.849-52, 2005.
DOI : 10.1128/AAC.49.2.849-852.2005

W. Kern, P. Steinke, and A. Schumacher, Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli, Journal of Antimicrobial Chemotherapy, vol.57, issue.2, pp.339-382, 2006.
DOI : 10.1093/jac/dki445

S. Pannek, P. Higgins, and P. Steinke, Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-??-naphthylamide, Journal of Antimicrobial Chemotherapy, vol.57, issue.5
DOI : 10.1093/jac/dkl081

URL : http://jac.oxfordjournals.org/cgi/content/short/57/5/970

M. Nelson, B. Park, and J. Andrews, Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclines, Journal of Medicinal Chemistry, vol.36, issue.3, pp.370-377, 1993.
DOI : 10.1021/jm00055a008

M. Nelson, B. Park, and S. Levy, Molecular Requirements for the Inhibition of the Tetracycline Antiport Protein and the Effect of Potent Inhibitors on the Growth of Tetracycline-Resistant Bacteria, Journal of Medicinal Chemistry, vol.37, issue.9, pp.1355-61, 1994.
DOI : 10.1021/jm00035a016

M. Nelson and S. Levy, Reversal of tetracycline resistance

M. Mallea, A. Mahamoud, and C. J. , Alkylaminoquinolines mediated by different bacterial tetracycline resistance determinants by inhibit bacterial antibiotic efflux pump in multidrug resistant clinical an inhibitor of the Tet(B) antiport protein, Antimicrob Agents Chemother, vol.43, pp.1719-1743, 1999.

J. Molnar, A. Hever, and I. Fakla, Inhibition of the transport funcefflux pump in resistant Enterobacter aerogenes and Klebsiella tion of membrane proteins by some substituted phenothiazines in E. coli and multidrug resistant tumor cells, Anticancer Res, vol.17, pp.481-487, 1997.

L. Amaral, M. Viveiros, and J. Molnar, Antimicrobial activity of phenothiazines, In Vivo, vol.18, pp.725-756, 2004.