In vivo measurement of a new source of contrast, the dipolar relaxation time, T1D , using a modified inhomogeneous magnetization transfer (ihMT) sequence
Abstract
PURPOSE: This paper describes a technique that can be used in vivo to measure the dipolar relaxation time, T1D , of macromolecular protons contributing to magnetization transfer (MT) in tissues and to produce quantitative T1D maps. THEORY AND METHODS: The technique builds upon the inhomogeneous MT (ihMT) technique that is particularly sensitive to tissue components with long T1D . A standard ihMT experiment was altered to introduce a variable time for switching between positive and negative offset frequencies for RF saturation. A model for the dependence of ihMT was developed and used to fit data acquired in vivo. RESULTS: Application of the method to images from brains of healthy volunteers produced values of T1D = (5.9 ± 1.2) ms in gray matter and T1D = (6.2 ± 0.4) ms in white matter regions and provided maps of the T1D parameter. CONCLUSION: The model and experiments described provide access to a new relaxation characteristic of tissue with potentially unique diagnostic information. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.