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The development of ultrahigh-field magnetic  resonance (UHF-MR) is moving
forward at an amazing speed that is breaking through technical barriers almost
as  fast  as  they  appear. UHF-MR  has  become  an  engine  for  innovation  in
experimental  and  clinical  research  [1–11].  With  more  than  35,000  MR
examinations already performed at 7.0 Tesla, the reasons for moving UHF-MR
into clinical applications are more compelling than ever. The value of high-field
MR has already proven itself many times over at lower field strengths; now 7.0
T has opened a window on tissues, organs and (patho)physiological processes
that  have been largely  inaccessible  in  the past.  Images from these instru-
ments  have  revealed  new  aspects  of  the  anatomy,  functions  and  physio-
metabolic  characteristics  of  the  brain,  heart,  joints,  kidneys,  liver, eye and
other organs/tissues, at an unparalleled quality. The number 35,000 sounds
large, but in fact we have barely cracked open the door and have yet to truly
assess what lies on the other side. 

That  makes  this  a  perfect  moment  for  a  highly  topi-  cal  special  issue  of
MAGMA: those of us who work in UHF-MR can see a clear route forward for
resolving  tech-  nological  issues  and  can  outline  some  of  the  new  oppor-
tunities that will accompany even higher field strengths. The issue provides an
overview of the state of the art and discusses the clinical relevance of what we
have  already  observed  and  can  clearly  foresee.  Articles  are  devoted  to
development  of  novel  methodology  [12–16],  safety  topics  [17–19]  early
multicenter trials [20], frontier human stud- ies [21–28], breakthrough clinical
applications [29–36] and future directions of UHF-MR [37, 38]. At the moment
some of these new concepts and clinical applications are merely of proof-of-
principle nature and visions, but they are compelling enough to drive the field
forward. We hope to engage the interest of clinicians, basic scientists, engi-
neers, translational researchers and applied scientists from many areas, and
particularly to attract young scientists and new entrants into the field. In doing



so, we hope to con- vince the MR imaging and spectroscopy communities to
throw their weight into the task of solving technical prob- lems and conceiving
new clinical applications. UHF MR has a staggering number of potential uses in
neuroscience, neurology, radiology, cardiology, internal medicine, oncol- ogy,
nephrology,  ophthalmology  and  other  related  clinical  fields.  As  they  are
developed, we will push the boundaries of MR physics, biomedical engineering
and biomedical sci- ences in many other ways.  

Another reason this special issue is timely is because physicists, engineers and
pioneers from related disciplines have already taken an even further step into
the future, in their minds, with something they are calling Extreme Field MR
(EF-MR). This envisions human MR at 20 T [37, 38], and it is an important leap
of  the  imagination  because it  aims  to  fill  a  crucial  “resolution gap”  in  our
understand- ing of human biology [39, 40]. While discoveries are pour- ing in
on  the  molecular  and  cellular  level  every  day,  it  is  extremely  difficult  to
integrate these findings into a coher- ent picture of the functions of tissues and
pathological pro- cesses at a mesoscopic level above that of the cell. There is a
wide gap between the view of biologists and clinicians that is begging to be
filled. Extreme field MR is probably an ideal technology that will reach between
these levels in vivo by bridging a crucial gap in resolution in space and time.  

Achieving this goal will  certainly require extra resources—and the will to go
there.  While  the  first  20  T  class  MR instruments  will  likely  be  devoted  to
discovery and to proof of principle, the findings will be crucial guides to making
the best  use  of  lower-resolution imaging tech-  niques.  The only  thing that
could keep the dream of human MR at 20 T from becoming reality would be a
failure to fol- low the path and see what develops. Will the clinic even- tually
be able to follow us to even higher fields? It always does, if a whole community
of experts devotes their crea- tive efforts to the task. Currently we have only
the roughest sense of what we will find. But even that glimpse has made some
of us believers. We hope that this issue will convey the seeds of this vision and
inspire you—as it has us—to become pioneers in these amazingly promising
new areas of biomedical research: ultrahigh field and extreme field MR.  
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