Mild and Metal-Free Regioselective 1,2-Addition of Carbon Nucleophiles to α, β-Unsaturated Imines

Cédric Spitz
Thierry Terme
Patrice Vanelle*

Aix-Marseille Université, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064

- 13385 Marseille Cedex 05, France
patrice.vanelle@univ-amu.fr

Received: 23.07.2015
Accepted after revision: 03.09.2015
Published online: 17.09.2015
DOI: $10.1055 / \mathrm{s}-0035-1560574$; Art ID: st-2015-d0572-I
Abstract A mild and metal-free regioselective 1,2-addition of carbon nucleophiles to α, β-unsaturated imines has been developed. Good yields and total regioselectivities were achieved by addition of p-nitrobenzyl chloride or 2,3-bis(bromomethyl)quinoxaline to α, β-unsaturated tosylimines.

Key words α, β-unsaturated tosylimines, regioselectivity, TDAE, addition, metal-free

Allylic amines represent an important structural motif in organic synthesis because of their high versatility in a wide range of organic transformations including asymmetric total syntheses. ${ }^{1}$ Furthermore, allylic amine functionality is found in biologically active compounds. ${ }^{2}$ Of the different methods available to construct the allylamine scaffold, adding organometallic reagents to α, β-unsaturated imines is one of the most commonly used. When a nucleophile is added to α, β-unsaturated tosylimines, it can lead to 1,2 -addition or 1,4 -addition. This is influenced by several factors, such as the nature of both organometallic species and substrates. As a general rule, organolithiums are by far the most popular reagents to promote 1,2-addition, whereas organocuprates predominantly promote conjugate addition.

Tetrakis(dimethylamino)ethylene (TDAE) is an organic reducing agent, that reacts with halogenated derivatives to generate a carbanion under mild conditions. ${ }^{3}$ In particular, we have shown that from o - and p-nitrobenzyl chlorides, TDAE is able to generate a nitrobenzyl carbanion that can react with various electrophiles such as aromatic aldehydes, α-ketoester, ketomalonate, α-ketolactam, and imine derivatives. ${ }^{4}$

In this study we wished to determine how the carbanion generated by our metal-free conditions would react in the presence of α, β-unsaturated imines. As part of our research program to develop new bioactive compounds, ${ }^{5}$ we report herein the application of our TDAE methodology for the regioselective 1,2 -addition of p-nitrobenzyl chloride (1) or 2,3-bis(bromomethyl)quinoxaline (4) to a variety of α, β-unsaturated tosylimines 2.

The reaction between p-nitrobenzyl chloride (1) and various α, β-unsaturated N-tosylimines 2a-f in the presence of TDAE at $-20^{\circ} \mathrm{C}$ for one hour, followed by two hours at room temperature, led to the corresponding allylamines ${ }^{6}$ in good yields (51-81\%) and with total 1,2-regioselectivity (Scheme 1). Reactions with both electron-poor and elec-tron-rich imines produced good yields and complete regioselectivities. Interestingly, the heteroaromatic imine $\mathbf{2 e}$ allowed the formation of the corresponding amine $\mathbf{3 e}$ in good yield. Moreover, the more bulky β-disubstituted imine $\mathbf{2 f}$ gave only the product of 1,2 -addition $\mathbf{3 f}$ in 69% yield.

The structure of amine 3a, the only regioisomer formed by reaction of p-nitrobenzyl chloride ($\mathbf{1}$) with imine $\mathbf{2 a}$, was determined by X-ray crystal structure analysis (Figure 1). ${ }^{\top}$

Figure 1 X-ray crystal structure of 3a

Scheme 1 Regioselective 1,2-addition of p-nitrobenzyl chloride (1) to α, β-unsaturated tosylimines 2 using the TDAE strategy. Reagents and conditions: $\mathbf{1}$ (0.2 mmol), $\mathbf{2}(0.24 \mathrm{mmol})$, and TDAE (0.2 mmol) in anhydrous DMF stirred at $-20^{\circ} \mathrm{C}$ for 1 h and then maintained at r.t. for 2 h ; yields are isolated yields after purification by chromatography.

Since 2003, we have introduced a new program directed toward the development of original synthetic methods using TDAE methodology in medicinal chemistry. ${ }^{8}$ In this context, we recently described the synthesis of quinoxaline derivatives which could offer very interesting biological properties. ${ }^{9}$ Thus, we describe herein the metal-free synthesis of five new substituted pyrido[3,4-b]quinoxalines using TDAE in the presence of 2,3-bis(bromomethyl)quinoxaline (4) and various α, β-unsaturated N-tosylimines 2 (Scheme 2).

Both electron-poor and electron-rich imines produced good yields and complete regioselectivities. Interestingly, the reaction conditions are tolerant with the formation of amine 5e from heteroaromatic imine $\mathbf{2 e}$. Moreover, the more bulky β-disubstituted imine $\mathbf{2 f}$ gave only the product of 1,2 -addition $\mathbf{5 f}$ in 44% yield. The mechanism could involve nucleophilic addition of carbanion formed by the action of TDAE with 2,3-bis(bromomethyl)quinoxaline on the imine group of sulfonimine $\mathbf{2}$ followed by an intramolecular nucleophilic substitution of the second bromomethyl group. ${ }^{9 b}$

Scheme 2 Regioselective 1,2-addition of 2,3-bis(bromomethyl)quinoxaline (4) to α, β-unsaturated tosylimines $\mathbf{2}$ using the TDAE strategy. Reagents and conditions: $\mathbf{1}(0.2 \mathrm{mmol}), \mathbf{2}(0.24 \mathrm{mmol})$, and TDAE (0.2 mmol) in anhydrous DMF stirred at $-20^{\circ} \mathrm{C}$ for 1 h and then maintained at r.t. for 2 h ; yields are isolated yields after purification by chromatography.

In conclusion, the regioselective addition of p-nitrobenzyl chloride (1) or 2,3-bis(bromomethyl)quinoxaline (4) to α, β-unsaturated tosylimines using the TDAE strategy allowed the synthesis of allylamines in good yields and complete 1,2-regioselectivity. The tolerance of nitro groups and heteroaromatic nucleophiles such as quinoxaline derivatives suggests that this method is a good alternative to the use of organometallic reagents to prepare allylic amines. Further research is in progress to extend the scope to an asymmetric version using enantiopure α, β-unsaturated N -sulfinimines.

Acknowledgment

This work was supported by the CNRS and Aix-Marseille University. The authors thank the Spectropole team for elemental analysis. We express our thanks to V. Remusat for recording ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560574.

References and Notes

(1) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689.
(2) (a) Petranyi, G.; Ryder, N. S.; Stutz, A. Science 1984, 1239. (b) Ghannoum, M.; Isham, N.; Verma, A.; Plaum, S.; Fleischer, A. Jr.; Hardas, B. Antimicrob. Agents Chemother. 2013, 4369. (c) Marín, M. T.; Margarit, M. V.; Salcedo, G. E. Farmaco 2002, 57, 723.
(3) (a) Takechi, N.; Aït-Mohand, S.; Médebielle, M.; Dolbier, W. R. Jr. Tetrahedron Lett. 2002, 43, 4317. (b) Pooput, C.; Médebielle, M.; Dolbier, W. R. Jr. Org. Lett. 2004, 6, 301. (c) Pooput, C.; Médebielle, M.; Dolbier, W. R. Jr. J. Org. Chem. 2006, 71, 3564.
(4) (a) Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. Tetrahedron Lett. 2003, 44, 6433. (b) Giuglio-Tonolo, G.; Terme, T.; Médebielle, M.; Vanelle, P. Tetrahedron Lett. 2004, 45, 5121. (c) Khoumeri, O.; Terme, T.; Vanelle, P. Synthesis 2009, 3677. (d) Khoumeri, O.; Giuglio-Tonolo, G.; Crozet, M. D.; Terme, T. M.; Vanelle, P. Tetrahedron 2011, 67, 6173. (e) Spitz, C.; Khoumeri, O.; Terme, T.; Vanelle, P. Synlett 2013, 24, 1725. (f) Broggi, J.; Terme, T.; Vanelle, P. Angew. Chem. Int. Ed. 2014, 53, 384.
(5) (a) Vanelle, P.; Maldonado, J.; Madadi, N.; Gueiffier, A.; Teulade, J.-C.; Chapat, J.-P.; Crozet, M. P. Tetrahedron Lett. 1990, 31, 3013. (b) Delmas, F.; Gasquet, M.; Timon-David, P.; Madadi, N.; Vanelle, P.; Vaille, A.; Maldonado, J. Eur. J. Med. Chem. 1993, 28, 23. (c) Crozet, M. D.; Botta, C.; Gasquet, M.; Curti, C.; Remusat, V.; Hutter, S.; Chapelle, O.; Azas, N.; De Méo, M.; Vanelle, P. Eur. J. Med. Chem. 2009, 44, 653. (d) Dunn, L. A.; Burgess, A. G.; Krauer, K. G.; Eckmann, L.; Vanelle, P.; Crozet, M. D.; Gillin, F. D.; Upcroft, P.; Upcroft, J. A. Int. J. Antimicrob. Agents 2010, 36, 37. (e) Kieffer, C.; Cohen, A.; Verhaeghe, P.; Hutter, S.; CasteraDucros, C.; Laget, M.; Remusat, V.; M’Rabet, M. K.; Rault, S.; Rathelot, P.; Azas, N.; Vanelle, P. Eur. J. Med. Chem. 2015, 92, 282.
(6) General Procedure

To a stirred solution of p-nitrobenzyl chloride (1) or 2,3-bis(bromomethyl)quinoxaline ($4,0.2 \mathrm{mmol}$) and N -tosylimine 2 (0.24 mmol) in DMF (1 mL) at $-20^{\circ} \mathrm{C}$ was added TDAE (0.2 mmol). The solution was vigorously stirred at $-20^{\circ} \mathrm{C}$ for 1 h and then maintained at r.t. for 2 h . Water (5 mL) was added, and the
aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and dried over MgSO_{4}. Filtration and evaporation of the solvent furnished the crude product. Purification by silica gel chromatography (PE-EtOAc from 8:2 to 7:3 depending on the polarity of substrate) afforded pure amine products 3 or 5 .
(E)-4-Methyl-N-(1-(4-nitrophenyl)-4-phenylbut-3-en-2-

yl)benzenesulfonamide (3a)

81% yield; yellow solid; mp $189-191^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.12(\mathrm{~m}, 9 \mathrm{H}), 6.24(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=15.9,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.98(\mathrm{~m}$, $2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.0,144.4$, $143.8,137.6,135.8,132.5,130.5,129.7,128.7,128.3,127.4$, 127.2, 126.6, 123.8, 56.9, 42.3, 21.5. ESI-HRMS: $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right]^{+}$: 440.1639 ; found: 440.1640 .
(E)-3-Styryl-2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]quinoxaline (5a)
61% yield; yellow solid; mp $72-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.02-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-$ 7.71 (m, 2 H), 7.22-7.16 (m, 5 H$), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.38$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=16.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.12 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=17.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=17.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.4,148.0,144.1,141.9,141.4$, $136.3,135.7,134.2,130.1,130.0,128.8,128.7,128.6,128.3$, 127.7, 126.6, 124.6, 53.4, 46.4, 36.9, 21.6 (one carbon missing due to overlap). ESI-HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for [$\left.\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\right]^{+}$: 442.1584; found: 442.1584 .
(7) CCDC 1413021 contains the supplementary crystallographic data of compound 3a for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.
(8) (a) Montana, M.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2006, 47, 6573. (b) Montana, M.; Crozet, M. D.; Castera-Ducros, C.; Terme, T.; Vanelle, P. Heterocycles 2008, 75, 925. (c) Since, M.; Terme, T.; Vanelle, P. Tetrahedron 2009, 65, 6128. (d) Juspin, T.; Terme, T.; Vanelle, P. Synlett 2009, 1485. (e) Juspin, T.; GiuglioTonolo, G.; Terme, T.; Vanelle, P. Synthesis 2010, 844.
(9) (a) Montana, M.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2005, 46, 8373. (b) Khoumeri, O.; Terme, T.; Vanelle, P. Tetrahedron Lett. 2012, 53, 2410.

