K. M. Aird and R. Zhang, Nucleotide metabolism, oncogene-induced senescence and cancer, Cancer Letters, vol.356, issue.2, 2014.
DOI : 10.1016/j.canlet.2014.01.017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115046

S. L. Andersen, D. T. Bergstralh, K. P. Kohl, J. R. Larocque, C. B. Moore et al., Drosophila MUS312 and the Vertebrate Ortholog BTBD12 Interact with DNA Structure-Specific Endonucleases in DNA Repair and Recombination, Molecular Cell, vol.35, issue.1, pp.128-135, 2009.
DOI : 10.1016/j.molcel.2009.06.019

T. M. Ashton, H. W. Mankouri, A. Heidenblut, P. J. Mchugh, and I. D. Hickson, Pathways for Holliday Junction Processing during Homologous Recombination in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.31, issue.9, pp.1921-1933, 2011.
DOI : 10.1128/MCB.01130-10

J. Bartek, M. Mistrik, and J. Bartkova, Thresholds of replication stress signaling in cancer development and treatment, Nature Structural & Molecular Biology, vol.146, issue.1, pp.5-7, 2012.
DOI : 10.1038/nsmb.2220

M. Bogliolo, B. Schuster, C. Stoepker, B. Derkunt, Y. Su et al., Mutations in ERCC4, Encoding the DNA-Repair Endonuclease XPF, Cause Fanconi Anemia, The American Journal of Human Genetics, vol.92, issue.5, pp.800-806, 2013.
DOI : 10.1016/j.ajhg.2013.04.002

D. Castor, N. Nair, A. Déclais, C. Lachaud, R. Toth et al., Cooperative Control of Holliday Junction Resolution and DNA Repair by the SLX1 and MUS81-EME1 Nucleases, Molecular Cell, vol.52, issue.2, pp.221-233, 2013.
DOI : 10.1016/j.molcel.2013.08.036

K. L. Chan, T. Palmai-pallag, S. Ying, and I. D. Hickson, Replication stress induces sister-chromatid bridging at fragile site loci in mitosis, Nature Cell Biology, vol.8, issue.6, pp.753-760, 2009.
DOI : 10.1242/jcs.01604

A. Constantinou, Rescue of replication failure by Fanconi anaemia proteins, Chromosoma, vol.100, issue.1, pp.21-36, 2012.
DOI : 10.1007/s00412-011-0349-2

URL : https://hal.archives-ouvertes.fr/hal-00668756

F. B. Couch, C. E. Bansbach, R. Driscoll, J. W. Luzwick, G. G. Glick et al., ATR phosphorylates SMARCAL1 to prevent replication fork collapse, Genes & Development, vol.27, issue.14, pp.1610-1623, 2013.
DOI : 10.1101/gad.214080.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731549

S. Coulon, P. L. Gaillard, C. Chahwan, W. H. Mcdonald, J. R. Yates et al., Slx1-Slx4 Are Subunits of a Structure-specific Endonuclease That Maintains Ribosomal DNA in Fission Yeast, Molecular Biology of the Cell, vol.15, issue.1, pp.71-80, 2004.
DOI : 10.1091/mbc.E03-08-0586

G. P. Crossan, L. Van-der-weyden, I. V. Rosado, F. Langevin, P. L. Gaillard et al., Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia, Nature Genetics, vol.90, issue.2, pp.147-152, 2011.
DOI : 10.1007/s00335-005-2430-8

D. K. Douwel, R. A. Boonen, D. T. Long, A. A. Szypowska, M. Räschle et al., XPF-ERCC1 Acts in Unhooking DNA Interstrand Crosslinks in Cooperation with FANCD2 and FANCP/SLX4, Mol Cell, vol.54, pp.460-471, 2014.

S. Fekairi, S. Scaglione, C. Chahwan, E. R. Taylor, A. Tissier et al., Human SLX4 Is a Holliday Junction Resolvase Subunit that Binds Multiple DNA Repair/Recombination Endonucleases, Cell, vol.138, issue.1, pp.78-89, 2009.
DOI : 10.1016/j.cell.2009.06.029

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861413

S. Flott, C. Alabert, G. W. Toh, R. Toth, N. Sugawara et al., Phosphorylation of Slx4 by Mec1 and Tel1 Regulates the Single-Strand Annealing Mode of DNA Repair in Budding Yeast, Molecular and Cellular Biology, vol.27, issue.18, pp.6433-6445, 2007.
DOI : 10.1128/MCB.00135-07

URL : https://hal.archives-ouvertes.fr/hal-00176432

K. Fugger, W. K. Chu, P. Haahr, N. Kousholt, A. Beck et al., FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress, Nature Communications, vol.90, 1423.
DOI : 10.1038/ncomms2395

J. R. Gareau and C. D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.861-871, 2010.
DOI : 10.1038/nrm3011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079294

G. Human, Associated Nucleases MUS81 and SLX1 Are Essential for the Resolution of Replication-Induced Holliday Junctions, Cell Rep, vol.5, pp.207-215

M. R. Hodskinson, J. Silhan, G. P. Crossan, J. I. Garaycoechea, S. Mukherjee et al., Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1 in DNA Crosslink Repair, Mouse SLX4 Is a Tumor Suppressor that Stimulates the Activity of the Nuclease XPF-ERCC1in DNA Crosslink Repair, pp.472-484, 2014.
DOI : 10.1016/j.molcel.2014.03.014

S. P. Jackson and D. Durocher, Regulation of DNA Damage Responses by Ubiquitin and SUMO, Molecular Cell, vol.49, issue.5, pp.795-807, 2013.
DOI : 10.1016/j.molcel.2013.01.017

Y. T. Jeong, M. Rossi, L. Cermak, A. Saraf, L. Florens et al., FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress, The Journal of Cell Biology, vol.200, issue.2, pp.141-149, 2013.
DOI : 10.1021/ac9023999

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549964

V. Kaliraman and S. J. Brill, Role of SGS1 and SLX4 in maintaining rDNA structure in Saccharomyces cerevisiae, Current Genetics, vol.41, issue.6, pp.389-400, 2002.
DOI : 10.1007/s00294-002-0319-6

K. Kashiyama, Y. Nakazawa, D. T. Pilz, C. Guo, M. Shimada et al., Malfunction of Nuclease ERCC1-XPF Results in Diverse Clinical Manifestations and Causes Cockayne Syndrome, Xeroderma Pigmentosum, and Fanconi Anemia, The American Journal of Human Genetics, vol.92, issue.5, pp.807-819, 2013.
DOI : 10.1016/j.ajhg.2013.04.007

O. Kerscher, SUMO junction???what's your function? New insights through SUMO-interacting motifs, EMBO reports, vol.423, issue.6, pp.550-555, 2007.
DOI : 10.1038/sj.embor.7400980

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2002525

Y. Kim, F. P. Lach, R. Desetty, H. Hanenberg, A. D. Auerbach et al., Mutations of the SLX4 gene in Fanconi anemia, Nature Genetics, vol.668, issue.2, pp.142-146, 2011.
DOI : 10.1016/S1535-6108(03)00050-3

Y. Kim, G. S. Spitz, U. Veturi, F. P. Lach, A. D. Auerbach et al., Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4, Blood, vol.121, issue.1, pp.54-63, 2013.
DOI : 10.1182/blood-2012-07-441212

P. Knipscheer, A. Flotho, H. Klug, J. V. Olsen, W. J. Van-dijk et al., Ubc9 Sumoylation Regulates SUMO Target Discrimination, Molecular Cell, vol.31, issue.3, pp.371-382, 2008.
DOI : 10.1016/j.molcel.2008.05.022

URL : http://doi.org/10.1016/j.molcel.2008.05.022

D. Lin, Y. Huang, J. Jeng, H. Kuo, C. Chang et al., Role of SUMO-Interacting Motif in Daxx SUMO Modification, Subnuclear Localization, and Repression of Sumoylated Transcription Factors, Molecular Cell, vol.24, issue.3, pp.341-354, 2006.
DOI : 10.1016/j.molcel.2006.10.019

F. Melchior, SUMO: ligases, isopeptidases and nuclear pores, Trends in Biochemical Sciences, vol.28, issue.11, pp.612-618, 2003.
DOI : 10.1016/j.tibs.2003.09.002

J. C. Merrill, T. A. Melhuish, M. H. Kagey, S. Yang, A. D. Sharrocks et al., A Role for Non-Covalent SUMO Interaction Motifs in Pc2/CBX4 E3 Activity, PLoS ONE, vol.5, issue.1, p.8794, 2010.
DOI : 10.1371/journal.pone.0008794.g007

F. Mohideen, A. D. Capili, P. M. Bilimoria, T. Yamada, A. Bonni et al., A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9, Nature Structural & Molecular Biology, vol.497, issue.9, pp.945-952, 2009.
DOI : 10.1016/S0896-6273(03)00841-9

G. Moldovan and A. D. , To the Rescue: The Fanconi Anemia Genome Stability Pathway Salvages Replication Forks, Cancer Cell, vol.22, issue.1, pp.5-6, 2012.
DOI : 10.1016/j.ccr.2012.06.006

I. M. Munoz, K. Hain, A. Déclais, M. Gardiner, G. W. Toh et al., Coordination of Structure-Specific Nucleases by Human SLX4/BTBD12 Is Required for DNA Repair, Molecular Cell, vol.35, issue.1, pp.116-127, 2009.
DOI : 10.1016/j.molcel.2009.06.020

V. Naim, R. , and F. , The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities, Nature Cell Biology, vol.93, issue.4, pp.761-768, 2009.
DOI : 10.1073/pnas.96.10.5622

V. Naim, T. Wilhelm, M. Debatisse, R. , and F. , ERCC1 and MUS81???EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis, Nature Cell Biology, vol.277, issue.8, pp.1008-1015, 2013.
DOI : 10.1038/ncb2793

P. Y. Ohouo, F. M. Bastos-de-oliveira, B. S. Almeida, and M. B. Smolka, DNA Damage Signaling Recruits the Rtt107-Slx4 Scaffolds via Dpb11 to Mediate Replication Stress Response, Molecular Cell, vol.39, issue.2, pp.300-306, 2010.
DOI : 10.1016/j.molcel.2010.06.019

URL : http://doi.org/10.1016/j.molcel.2010.06.019

R. Perez-torrado, D. Yamada, and P. Defossez, Born to bind: the BTB protein???protein interaction domain, BioEssays, vol.26, issue.12, pp.1194-1202, 2006.
DOI : 10.1002/bies.20500

J. J. Perry, J. A. Tainer, and M. N. Boddy, A SIM-ultaneous role for SUMO and ubiquitin, Trends in Biochemical Sciences, vol.33, issue.5, pp.201-208, 2008.
DOI : 10.1016/j.tibs.2008.02.001

L. Pintard, A. Willems, and M. Peter, Cullin-based ubiquitin ligases: Cul3???BTB complexes join the family, The EMBO Journal, vol.91, issue.8, pp.1681-1687, 2004.
DOI : 10.1038/sj.emboj.7600186

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554136

R. L. Ragland, S. Patel, R. S. Rivard, K. Smith, A. A. Peters et al., RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells, Genes & Development, vol.27, issue.20, pp.2259-2273, 2013.
DOI : 10.1101/gad.223180.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814646

D. Reverter and C. D. Lima, Insights into E3 ligase activity revealed by a SUMO???RanGAP1???Ubc9???Nup358 complex, Nature, vol.250, issue.7042, pp.687-692, 2005.
DOI : 10.1146/ANNUREV.BIOCHEM.70.1.503

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1416492

P. Sarangi, Z. Bartosova, V. Altmannova, C. Holland, M. Chavdarova et al., Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association, Nucleic Acids Research, vol.42, issue.10, pp.6393-6404, 2014.
DOI : 10.1093/nar/gku300

J. Seeler and A. Dejean, Nuclear and unclear functions of SUMO, Nature Reviews Molecular Cell Biology, vol.4, issue.9, pp.690-699, 2003.
DOI : 10.1038/nrm1200

J. M. Svendsen and J. W. Harper, GEN1/Yen1 and the SLX4 complex: solutions to the problem of Holliday junction resolution, Genes & Development, vol.24, issue.6, pp.521-536, 2010.
DOI : 10.1101/gad.1903510

J. M. Svendsen, A. Smogorzewska, M. E. Sowa, B. C. O-'connell, S. P. Gygi et al., Mammalian BTBD12/SLX4 Assembles A Holliday Junction Resolvase and Is Required for DNA Repair, Cell, vol.138, issue.1, pp.63-77, 2009.
DOI : 10.1016/j.cell.2009.06.030

H. Takahashi, Noncovalent SUMO-1 Binding Activity of Thymine DNA Glycosylase (TDG) Is Required for Its SUMO-1 Modification and Colocalization with the Promyelocytic Leukemia Protein, Journal of Biological Chemistry, vol.280, issue.7, pp.5611-5621, 2004.
DOI : 10.1074/jbc.M408130200

H. D. Ulrich, Ubiquitin and SUMO in DNA repair at a glance, Journal of Cell Science, vol.125, issue.2, pp.249-254, 2012.
DOI : 10.1242/jcs.091801

J. Vannier, V. Pavicic-kaltenbrunner, M. I. Petalcorin, H. Ding, and S. J. Boulton, RTEL1 Dismantles T Loops and Counteracts Telomeric G4-DNA to Maintain Telomere Integrity, Cell, vol.149, issue.4, pp.795-806, 2012.
DOI : 10.1016/j.cell.2012.03.030

URL : http://doi.org/10.1016/j.cell.2012.03.030