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Through a comparison between experiments and numerical simulations, we have
examined the dynamics of a cloud of spheres at a small but finite Reynolds number.
The cloud is seen to flatten and to transition into a torus, which further widens and
eventually breaks up into droplets. While this behaviour bears some similarity to that
observed at zero inertia, the underlying physical mechanisms differ. Moreover, the
evolution of the cloud deformation is accelerated as inertia is increased. Two inertial
regimes in which macro-scale inertia and micro-scale inertia become successively
dominant are clearly identified.
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1. Introduction
The dispersion of a collection of particles is relevant to many natural phenomena

such as pyroclastic flows (i.e. fast-moving currents of hot gas and rock fragments
produced by a volcanic eruption), turbidity currents (i.e. sediment-laden flows down a
slope usually in lakes and oceans) and the mixing and spreading of pollutants in lakes
and oceans. In most of these natural phenomena or industrial applications involving
dispersion of particles, the particulate flow is dominated by inertial forces. In this
paper, we consider the motion of a cloud of spherical particles settling because of
gravity in an otherwise pure liquid when the Reynolds number is no longer zero. In
contrast to high-Reynolds-number clouds related to some of the geophysical flows
mentioned above (see e.g. Noh & Fernando 1993; Bush, Thurber & Blanchette 2003)
the focus here is on finite-but-moderate-Reynolds-number clouds, which have been
scarcely addressed.

Previous work on the dynamics of sedimenting clouds of particles have been
undertaken in conditions where inertia is considered as negligible (Adachi, Kiriyama &
Koshioka 1978; Nitsche & Batchelor 1997; Machu et al. 2001; Metzger, Nicolas &
Guazzelli 2007; Park et al. 2010). The initially spherical cloud is found to evolve
into a torus and eventually to break up into (usually two) secondary droplets which
themselves deform into tori in a repeating cascade. The sequence of instability and
breakup is found to be insensitive to the initial shape of the cloud and occurs in
the complete absence of inertia (Metzger et al. 2007). Faster breakup is observed for
clouds of fibres due to the self-motion of the anisotropic particles (Park et al. 2010).
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Figure 1. The regimes of evolution for a falling cloud of particles as a function of the
ratio R0/a of cloud radius to particle radius, particle Reynolds number Rep = U0aρf /µ
and volume fraction φ. The dashed and dotted lines (R0/a ∼ Re

−1/3
p φ−1/3) denote transition to

a regime dominated by ‘macro-scale inertia’ for φ ≈ 50 % and 5 % respectively. The solid line
(R0/a ∼ Re−1

p ) denotes transition to a regime dominated by ‘micro-scale inertia’. The symbols
are as follows: ∗, experiments of Metzger et al. (2007) at φ ≈ 4 % and 20 %; !, simulations
of Bosse et al. (2005b) for Rec ∼ 1; & and ◦, present experiments at φ ≈ 2–10 % and 50 %
respectively.

An important feature is that the randomness of the particle velocities causes some
particles to depart from the closed toroidal streamlines inside the cloud, to be carried
round the boundary and thence downstream in a vertical tail emanating from the
rear of the cloud (Nitsche & Batchelor 1997; Metzger et al. 2007).

A limited number of studies treat the case in which inertia is no longer negligible.
Bosse et al. (2005b) investigated numerically the settling dynamics of an initially
spherical cloud for low and moderate cloud Reynolds numbers. A Fourier pseudo-
spectral method used to solve the Navier–Stokes equations for the fluid phase was
combined with a Lagrangian point-particle tracking for the particle phase. They
found that the cloud showed no significant leakage and deformed into a torus that
eventually fractured into multiple droplets. The number of droplets was primarily
determined by the cloud Reynolds number and the particle distribution inside the
initial cloud. Subramanian & Koch (2008) presented a theoretical analysis of the
long-time dynamics of sedimenting clouds, wherein the motion of each particle was
governed by the steady Oseen velocity fields due to the other particles inside the
cloud. They examined the cases in which particle interactions were dominated by the
source or the wake part of this inertial velocity field.

The different regimes of evolution for a sedimenting cloud of particles are presented
in figure 1, adapted from figure 1 in Subramanian & Koch (2008). The first
regime corresponds to the ‘Stokes cloud’, where both the particle Reynolds number
Rep =U0aρf /µ and the cloud Reynolds number Rec = V0R0ρf /µ are very small. Here
we have denoted by U0 ∼ (ρp − ρf )a2g/µ the Stokes velocity of an isolated sphere
of radius a and density ρp , settling in a fluid of viscosity µ and density ρf , and
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by V0 ∼φ(ρp − ρf )R2
0g/µ the Stokes velocity of a cloud of radius R0 and volume

fraction φ, settling in the same fluid, where g is the acceleration of gravity. In the
investigations of this regime mentioned earlier (Nitsche & Batchelor 1997; Machu
et al. 2001; Metzger et al. 2007), the interacting particles are treated as point forces,
and only the far-field hydrodynamic interactions (Stokeslets) are retained. When
inertia is increased, the sedimenting cloud transitions first to a regime dominated by
‘macro-scale inertia’ when the cloud Reynolds number Rec ( ∼φRepR3

0/a
3) ∼ 1, i.e.

R0/a ∼ Re−1/3
p φ−1/3. The numerical simulation of Bosse et al. (2005b) for Rec ∼ 1 lies

in that regime. A second transition to a regime dominated by ‘micro-scale inertia’
occurs when the inertial length #= a/Rep is of the order of the cloud radius R0, i.e.
R0/a ∼ Re−1

p . This is the regime investigated by Subramanian & Koch (2008), who
considered particles interacting through their steady Oseen velocity fields within the
cloud.

The above parameter regimes introduced by Subramanian & Koch (2008) lead us
to discuss the various dimensionless parameters involved in the problem. Following
Bosse et al. (2005b), we can identify a total of seven independent physical quantities
that uniquely describe the properties of a cloud of particles settling in a fluid under
gravity. The fluid is characterised by its viscosity µ and density ρf , the particles
by their radius a and density ρp , the cloud by its radius R0 and number N0 of
particles and, finally, the driving force by the gravitational acceleration g. Dimensional
analysis indicates that at least four dimensionless parameters have to be specified. An
appropriate choice is to consider the particle number N0, the dimensionless inertial
length #∗ =(a/R0)/Rep , the cloud Reynolds number Rec and the Stokes number
St =(2/9)(ρp/ρf )Rep . This last dimensionless number is always kept very small and
thus does not play a significant role here. It is important to note that the underlying
consideration is that long-range interactions dominate the behaviour, and short-range
repulsive forces (e.g. contact forces) are largely to be neglected; i.e. the behaviour is
believed to hardly depend on the ratio a∗ = a/R0. In this sense, parameters like N0

and φ =N0(a/R0)3 can be considered equivalent. The same holds for the pair #∗ and
Rep = (a/R0)/#∗. The reason for choosing N0 and #∗ becomes clear when looking at
the Oseenlet simulations detailed in § 3, which describe the interactions between point
particles in terms of the inertial length # and do not explicitly contain the particle
radius a. As a consequence, quantities like Rec, Rep and φ cannot be computed
for the simulation results. The conclusion of this discussion is that the appropriate
dimensionless parameters to describe the present system are N0, #∗ and Rec.

The objective of the present paper is to investigate the dynamics of clouds of
particles in regimes in which macro-scale inertia and micro-scale inertia become
dominant. This is undertaken by performing experiments that are described in § 2.
The experimental data are compared in § 4 with both the simulations of Bosse et al.
(2005a,b) and the Oseenlet simulations inspired by Subramanian & Koch (2008)
which are described in § 3. Conclusions are drawn in § 5.

2. Experimental techniques
The experimental techniques were similar to those developed by Metzger et al.

(2007). Two glass-walled vessels having dimensions 4 cm × 10 cm × 100 cm and
20 cm × 20 cm × 100 cm were used in the experiments. The suspension, i.e. the mixture
of particles and fluid, was prepared with a desired volume fraction φ in a small glass
container. Clouds having different initial radius R0 were then produced by injecting
with a syringe a given volume of this suspension at the top of the vessel filled
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Batch Composition a (µm) ρp (g cm−3)

A Leaded glass 51 ± 4 4.085 ± 0.040
B Polymethyl methacrylate 76 ± 10 1.178 ± 0.020
C Glass 75 ± 6 2.490 ± 0.010
D Glass 156 ± 6 2.490 ± 0.010

Table 1. Particle characteristics. The particle density ρp was measured with a pycnometer and
a fluid of measured density 0.823 g cm−3. The particle size distributions were determined with
a digital imaging system. The mean radius is denoted a, and the error corresponds to one
standard deviation.

Fluid Composition µ (cP) ρf (g cm−3)

1 10 % UCON oil + 90 % water 9.2 ± 0.1 1.011 ± 0.005
2 20 % UCON oil + 80 % water 42 ± 0.5 1.030 ± 0.005
3 25 % UCON oil + 75 % water 97 ± 6 1.040 ± 0.005
4 30 % UCON oil + 70 % water 127 ± 4 1.046 ± 0.005
5 34 % UCON oil + 66 % water 202 ± 6 1.051 ± 0.005
6 37 % UCON oil + 63 % water 295 ± 11 1.062 ± 0.005

Table 2. Fluid characteristics at T ≈ 20◦C. The viscosity µ was measured with a falling-ball
viscometer and the fluid density ρf with a volumetric flask of 20 ml.

with the same suspending fluid. The clouds with the largest radii were produced in
the wider vessel of cross-section 20 cm × 20 cm. Since we had to track both slow-
and fast-evolving clouds, we used two different cameras. The shape evolution of the
slow-evolving clouds was recorded by a digital video camera (Canon XM2) mounted
on a vertical sliding rail with an acquisition rate of 25 frames per second and a
resolution of 1300 × 1030 pixels. These clouds were illuminated by two neon tubes
located on each side of the vessel and were shot in front of a black background. For
the fast-evolving clouds, a high-speed camera (Photron Fastcam APX RS) with an
acquisition rate up to 500 frames per second and a resolution of 1024 × 1024 pixels
was required. These clouds were backlit using a 500 W spotlight through a diffusing
paper.

Each frame was thresholded, and the cloud contour was fitted with an ellipse
with ImageJ (a digital imaging software available at http://rsbweb.nih.gov/ij/). This
process provided the position of the centre of mass as well as the horizontal R and
vertical r radii (and thus the aspect ratio γ = R/r) of the cloud. The cloud velocity V
was measured from two successive images. The initial cloud velocity V0 was measured
over a set of successive images during which the cloud fell a distance of about five
times its initial radius R0. The initial number N0 of particles was estimated from
the known volume fraction φ and the measured radius R0 by using N0 =φ(R0/a)3.
The radius R0 and Stokes velocity V Stokes

0 =N0U0(6a/5R0) (see § 4.2) of the initially
spherical cloud were used to normalise the data.

Four batches of spherical particles having different radii a and densities ρp were used
in the experiments; their characteristics are given in table 1. They were suspended
in various mixtures of UCON oil and water having different viscosities µ; their
characteristics are given in table 2. Combining the different batches of particles and
fluid mixtures enabled us to examine the low- to small-Reynolds-number regimes
of evolution for a sedimenting cloud, as depicted in figure 1. The different sets
of experiments could be approximately classified into three groups: the first group
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(light-grey symbols) for which Rec " 0.1 and #/R0 # 10 lay in the Stokes regime;
the second group (dark-grey symbols) for which Rec # 0.1 and #/R0 # 10 lay in
the regime in which macro-scale inertia was dominant; and the third group (black
symbols) for which Rec # 0.1 and #/R0 " 10 lay in the regime in which micro-scale
inertia was dominant, i.e. in which the Oseen interactions were dominant. Because
of the fast settling of the particles during the suspension preparation, only clouds
having φ ≈ 50 % (circles in figure 1) were produced for Rep # 10−3, while clouds
having smaller φ ≈ 2–10 % (triangles in figure 1) were obtained for smaller Rep . Note
that in all the experiments the Stokes number St =(2/9)(ρp/ρf )Rep ) 1, and thus the
particles closely followed the fluid streamlines.

3. Oseenlet simulations
Following Subramanian & Koch (2008), we consider that the particles within the

cloud are driven by far-field steady Oseen interactions; i.e. the motion of each particle
is due to the sum of the steady Oseen disturbances produced by all other particles.
Despite the fact that the assumption of steady Oseen interactions for the particles
within the cloud (and consequently the assumption of linearity) is not fully justified,
we are following this approach because it leads to simple kinematic simulations, which
provide some insight into the dynamics of sedimenting clouds.

Within the steady Oseen approximation, each particle of radius a sedimenting with
velocity U0 creates a disturbance at a distance r from its centre given by the Oseen
stream function (see e.g. Lamb 1932, §342)

Ψ =U0a
2
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 (3.1)

in a spherical coordinate system with the polar axis coincident with the direction
of translation. In this leading-order Oseen approximation, the velocity scale is U0,
and the drag force is still the Stokes drag −6πµaU0, but there are two length scales,
namely the sphere radius a and the inertial length #= a/Rep = ν/U0. The first term
on the right-hand side of (3.1) is the finite-size portion, which happens to be identical
to that of the Stokes solution. The second term is the flow induced by a point force,
also called the Oseenlet. It reduces to the Stokeslet, Ψ → U0a

2 sin2 θ(3r/4a), when
r/# → 0. For r + #, the fore–aft symmetry of the Stokes flow structure is lost. The
flow in the far field is radial except in a narrow wake (bounded by a paraboloidal
surface) located directly behind the sphere, where the (−1/r) inflow compensates for
the radial (1/r2) outward flow. It is more convenient for the following analysis to
express the Oseenlet in Cartesian coordinates,

ui =
F

8πµ

{
xi

r2

[
2#

r
(1 − E) − E

]
+

E

r
δi3

}
, (3.2)

where F (≡6πµaU0) is the magnitude of the buoyancy force that acts along the
direction i = 3 and E = exp(−(1 + x3/r)r/2#).

Since the steady Oseen equations are still linear (but no longer reversible), the
velocity ṙα

i of a point particle α = 1, . . . , N0, located at rα
i within the cloud, is equal

to the sum of its terminal velocity U0δi3, when in isolation, and the fluid velocity
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disturbances, i.e. the Oseenlets, generated by all the other point particles β ,

drα
i

dt
= U0δi3 +

F

8πµ

∑

α -=β

{
ri

r2

[
2#

r
(1 − E) − E

]
+

E

r
δi3

}
, (3.3)

where ri = rα
i − r

β
i and r is the scalar length between the centres of particles α and β .

We can then proceed as in previous Stokeslet simulations for falling clouds (Ekiel-
Jeżewska, Metzger & Guazzelli 2006; Metzger et al. 2007) by choosing the frame of
reference moving with the terminal settling velocity of an isolated particle and deciding
to make all the values dimensionless by scaling the length and the velocity with the
radius R0 and the Stokes velocity V Stokes

0 = N0F/5πµR0 of the initially spherical cloud
of point particles, respectively, in the same way as in the experiments (note that
this Stokes velocity corresponds to that of a dilute cloud experiencing a drag force
−5πµR0V

Stokes
0 and is set as the reference velocity in both the experiments and the

simulations). The set of equations (3.3) becomes

dr∗α
i

dt∗ =
5

8N0

∑

α -=β

{
r∗
i

r∗2

[
2#∗

r∗ (1 − E) − E

]
+

E

r∗ δi3

}
, (3.4)

where the superscript ∗ denotes dimensionless quantities. In this reference frame
and with this normalisation, the set of equations (3.4) possesses two parameters:
the number of particles N0 and the normalised inertial length #∗ = #/R0. The
corresponding Stokeslet set of equations has only a single parameter N0 (Metzger et al.
2007). It is worth mentioning that the simulations based on (3.4) allow continuous
progress from a zero-inertia (Stokes) regime to a micro-scale-inertia regime by simply
decreasing the inertial length.

In the numerical simulations, the N0 particles were initially randomly distributed
inside a sphere of dimensionless radius R∗

0 = 1. The positions were then integrated
using a variable-order Adams–Bashforth–Moulton solver (ode113 in Matlab). These
simulations were performed with inertial length 0.5 $ #∗ $ 1000 and with initial
spherical clouds comprising 500 $ N0 $ 7500 particles, which were tracked over a
typical time interval 0 $ t∗ $ 1200 (in particular for the simulations having the largest
#∗, which had to run for a longer time to reach breakup). Because large variations
exist from one run to the next for the same couple of parameters N0 and #∗, typically
five runs for different realisations of the initial particle positions were performed and
were found to be sufficient to provide a meaningful average and standard deviation.

For each run, the position of the centre of mass of the cloud was identified, and
measuring its displacement between two successive times t∗ and t∗ + 1 provided the
cloud velocity V ∗(t∗). The particles were considered to belong to the cloud at time t∗

if their vertical position from the centre of mass was $R0. This yielded the number of
particles staying inside the cloud, N(t∗). For a direct comparison between simulations
and experiments, we chose to follow Metzger et al. (2007) for the definition of the
horizontal and vertical radii. The vertical radius r(t∗) was defined as the distance
from the front leading particle to the centre of mass of the cloud. The horizontal
radius R(t∗) was defined as the average of the maximum distance from the centre of
mass over four quadrants in the horizontal plane. This whole procedure generated
an ensemble of data over which to average the macroscopic quantities of the cloud
such as the cloud velocity V ∗, the number N of particles staying in the cloud and
its horizontal-to-vertical aspect ratio γ , as function of time t∗. The dispersion of the
data among runs was simply provided by the standard deviation.
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(a) (b)

Figure 2. Typical evolution of a cloud in the macro-scale-inertia regime: (a) the simulations
of Bosse et al. (2005a,b) with Rec = 1, N0 = 10 0096 and #∗ = 2600 and (b) the experiment with
Rec = 0.7, N0 = 16 000 and #∗ =179 (Rep = 8 × 10−5, R0/a =66, φ = 6 % and St = 2 × 10−5).
The complete dynamics for the experimental case is shown in supplementary movie 1 (available
at journals.cambridge.org/flm). The movie of the numerical simulation can be seen in Bosse
et al. (2005a). The upward tail of the experimental cloud at initial time is due to the injection
process.

4. Results and comparison
4.1. General evolution

The typical evolution of a cloud in the regime of macro-scale inertia is displayed in
figure 2. The cloud is seen to flatten and to transition into a toroidal shape. The
formed torus further expands and eventually breaks up into two droplets which may
destabilise again in a repeating cascade if the cloud contains a large enough number
of particles. No significant leakage of particles from the rear of the cloud is observed.
Similar qualitative evolution is found between the simulation of Bosse et al. (2005a,b)
and the experiments within this regime.

The typical evolution in the regime of micro-scale inertia when the inertial length is
of the order of the size of the cloud, i.e. #∗ ≈ 1, is shown in figure 3. The cloud is also
seen to flatten and to become a torus which further widens and eventually shatters
into two or three droplets. Again, there is no particle leakage. Conversely, when
the inertial length is increased (see figure 4 with #∗ ≈ 20), some leakage is observed,
and the sequence of events (transition towards a torus and breakup) resembles more
that observed for a Stokes cloud. Good qualitative agreement is seen between the
experiments and the Oseenlet simulations. Overall, the evolution rate increases with
decreasing inertial length.
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(a) (b)

Figure 3. Typical evolution of a cloud in the micro-scale-inertia regime #∗ ≈ 1: (a) the Oseenlet
simulations with N0 = 2000 and #∗ =1 and (b) the experiment with Rec = 15, N0 = 600 and
#∗ = 0.65 (Rep = 0.14, R0/a = 11, φ ≈ 50 % and St = 0.077). The complete dynamics for the
experimental case is shown in supplementary movie 2 and for the Oseenlet simulation in
supplementary movie 4. The small upward tail of the experimental cloud at initial time is due
to the injection process.

(a) (b)

Figure 4. Typical evolution of a cloud in the micro-scale-inertia regime for #∗ ≈ 20: (a)
the Oseenlet simulations with N0 = 7500 and #∗ = 20 and (b) the experiment with Rec = 3.5,
N0 = 7000 and #∗ = 21 (Rep = 2 × 10−3, R0/a = 24, φ ≈ 50 % and St = 5 × 10−4). The complete
dynamics for the experimental case is shown in supplementary movie 3 and for the Oseenlet
simulation in supplementary movie 5.
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Figure 5. The Reynolds number of the experimental cloud, Rec , versus the product of the
initial number of particles by the particle Reynolds number, N0Rep . The dashed line denotes
Rec = 6N0Rep/5. The symbols are the same as in figure 1. The error bars are of the same size
as or smaller than the symbols.

In all the above evolutions, the particles present a toroidal circulation inside the
cloud, which can be clearly seen in the supplementary movies.

4.2. Cloud settling velocity and aspect ratio

We start by examining the initial velocity V0 of the cloud in both the experiments
and the Oseenlet simulations. In the Stokes regime, V Stokes

0 ∼ N0U0a/R0. In the
experiments, the deviation of V0 from this Stokes scaling with increasing inertia
is shown in figure 5 by plotting the cloud Reynolds number Rec = V0R0ρf /µ
versus the product of the initial number N0 of particles by the particle Reynolds
number Rep = U0aρf /µ. For Rec " 1, the experimental data follow approximately
the Stokes scaling ≈ N0U0(6a/5R0). For Rec # 1, V0 becomes increasingly lower than
V Stokes

0 = N0U0(6a/5R0) with increasing Rec. In the Oseenlet simulations, the deviation
of V0 from V Stokes

0 for an initially spherical cloud of point particles is shown in figure 6
as a function of the normalised inertial length #∗. For #∗ # 50, V0 ≈ V Stokes

0 , while for
#∗ " 50, V0 becomes increasingly lower than V Stokes

0 with decreasing #∗. Note that
normalising V0 by V Stokes

0 makes the data independent of N0. It should be mentioned
that, while V0 is a quantity directly measured in the experiments and simulations, U0

is calculated from the particle properties.
As time increases, the cloud flattens and evolves towards a torus which expands,

and consequently its aspect ratio increases while its velocity decreases. This general
trend is observed in regimes of both macro- and micro-scale inertia as seen in figures 7
and 8.

Comparison between experimental data in the regime of macro-scale inertia
(symbols) and the numerical simulations of Bosse et al. (2005a,b) is shown in figure 7.
The numerical data have been inferred from the movie shown in Bosse et al. (2005a)
by an analysis similar to that described in § 2 for the experimental movies. While the
rate of decrease of V ∗ is similar in the experiments and the simulations, the rate of
growth of γ is stronger in the experiments than in the simulations. Note also the
difference in normalised initial velocity between the experiments and the simulations,
indicating differences in deviation from the Stokes scaling.
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Figure 7. (a) Cloud velocity V ∗ and (b) aspect ratio γ versus time t∗ for the following:
simulation of Bosse et al. (2005a,b) at Rec =1, denoted by the solid line; experiment with
Rec = 1.08, N0 = 19 000 and #∗ = 185 (Rep = 8 × 10−5, R0/a = 64, φ ≈ 8 %, and St = 2 × 10−5),
denoted by dark-grey & with the dotted line; experiment with Rec = 1.6, N0 = 1780 and #∗ = 34
(Rep = 0.0019, R0/a = 15, φ ≈ 50 % and St = 5 × 10−4), denoted by dark-grey ◦ with the solid
line.

Comparison between the experimental data and the Oseenlet simulations is shown
in figure 8. For #∗ # 1000, the evolution of V ∗ and γ is similar to that obtained in the
Stokes regimes. In particular, the Oseenlet simulations (in figures 8e–f ) give results
similar to those of the Stokeslet simulations (in figures 8g–h). The rate of decrease
of V ∗ and to a lesser extent the rate of increase of γ are stronger for smaller N0.
The agreement between the experiments and the simulations is good as far as the
evolution of the rate of decrease of V ∗ is concerned (see figure 8e). A stronger growth
of γ is observed in the experiments as previously reported by Metzger et al. (2007)
(see figure 8f ). As a general trend, when #∗ is reduced, the rate of decrease of V ∗

and the rate of growth of γ increases, and both tend to become independent of N0

(see figure 8a–d ). Good agreement between the experiments and the simulations is
obtained for the rate of decrease of V ∗ and the rate of growth of γ at #∗ = 20. Some
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Figure 8. (a, c, e, g) Cloud velocity V ∗ and (b, d, f, h) aspect ratio γ versus time t∗ for
different #∗. Simulations in all graphs: !, N0 = 500; !, N0 = 5000. Experiments in (a) and (b):
black " with solid line, Rec =11.4, N0 = 340 and #∗ = 0.79 (Rep = 0.14, R0/a = 9, φ ≈ 50 % and
St = 0.077); black " with dotted line, Rec = 14.6, N0 = 602 and #∗ = 0.65 (Rep = 0.14, R0/a = 11,
φ ≈ 50 % and St = 0.077). Experiments in (c) and (d ): dark-grey " with solid line, Rec = 1.6,
N0 = 1768 and #∗ = 34 (Rep = 0.0019, R0/a = 15, φ ≈ 50 % and St =5 × 10−4); dark-grey "

with dotted line, Rec = 5.3, N0 = 8935 and #∗ =20 (Rep = 0.0019, R0/a = 26, φ ≈ 50 % and
St = 5 × 10−4). Experiments in (e) and (f ): light-grey ! with solid line, Rec =0.066, N0 = 700
and #∗ = 340 (Rep = 1.4 × 10−4, R0/a = 21, φ ≈ 8 % and St = 7 × 10−5); light-grey ! with
dotted line, Rec =0.78, N0 = 4040 and #∗ = 1575 (Rep =1.7 × 10−5, R0/a = 37, φ ≈ 8 % and
St = 9 × 10−6). Stokeslet simulations in (g) and (h). The error bars are of the same size as or
smaller than the symbols.
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Figure 9. Percentage 1 − N∗ of particles that have leaked away from the cloud as a function
of time t∗ for N0 = 5000 (!). The dispersion of the numerical data (one standard deviation)
is indicated for a few instants. The solid lines denote the Oseenlet simulations at different #∗

indicated in the graph. The dashed line denotes the Stokeslet simulation.

divergence is obtained at #∗ = 1, in particular for the rate of decrease of V ∗. Note
again that the deviation of the initial velocity V0 from the Stokes scaling is stronger
in the experiments.

4.3. Particle leakage

While particle leakage is an important feature at zero Reynolds number (Nitsche &
Batchelor 1997; Metzger et al. 2007), no leakage is observed in the regime of macro-
scale inertia (see figure 2, supplementary movie 1 and the movie shown in Bosse et al.
2005a) and that of micro-scale inertia for #∗ ∼ 1 (see figure 3 and supplementary
movies 2 and 4). When #∗ is increased (see figure 4 and supplementary movies 3 and
5), the rate of leakage increases, and the cloud evolution tends to be similar to that
found at zero Reynolds number.

A precise evaluation of the rate of leakage is not readily feasible in the experiments.
The fast settling of the particles due to inertia causes difficulty in the injection process.
Consequently, the initial clouds are not perfectly spherical, and a strong leakage is
seen at early times. This leads to problems in obtaining any accurate measurement.
We have thus chosen to rely upon the Oseenlet simulations to study the variation of
the rate of leakage with inertia.

Figure 9 shows the percentage 1 − N∗ of particles that have leaked away from
the cloud as a function of time t∗ for a fixed initial number of particles, N0 =
5000, but for varying inertial lengths, 1 $ #∗ $ 1000. As #∗ is increased, the particle
leakage increases and tends to that predicted by the Stokeslet simulation for #∗ # 1000.
This shows that increasing the inertial length in the Oseenlet simulations provides
a continuous transition from a micro-scale-inertia-dominated regime to a Stokes-
dominated regime.

As found for Stokes clouds (Metzger et al. 2007), two different regimes having two
different rates of leakage are observed. For t∗ " 10 (when the cloud shape is still
approximately spherical), the rate of leakage is large, while for t∗ # 10 (when the
cloud has evolved towards a toroidal shape), the rate of leakage is lower. Note that
for #∗ " 5, these two regimes are not seen because there is nearly no leakage.

One can estimate the averaged rate of leakage 〈−dN∗/dt∗〉 for t∗ # 10 by defining
〈−dN∗/dt∗〉 =(N (10) − N(t∗

f ))/(t∗
f − 10), where t∗

f is taken as large as possible. In
figure 10(a), 〈−dN∗/dt∗〉 is plotted versus N0 for several #∗ in the log–log scale.
Again, for large #∗ (typically #∗ # 50), the dependence of the rate of leakage on N0
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Figure 10. (a) Rate of leakage 〈−dN∗/dt∗〉 estimated for t∗ > 10 versus N0 obtained from
the Oseenlet simulations (solid lines) for four different inertial lengths indicated in the graph
(#∗ = 1, 20, 50, 1000) and from the Stokeslet simulations (dashed line). The lines are a guide to
the eye. (b) N

2/3
0 (1−N∗) as a function of t∗. The dispersion of the numerical data (one standard

deviation) is indicated for a few instants. The solid lines denote the Oseenlet simulations at
different #∗ indicated in the graph. The dashed line denotes the Stokeslet simulation. The
symbols indicate different N0, as in figure 6.

is similar to that predicted by the Stokeslet simulations of Metzger et al. (2007), and
one finds a scaling ∝N

−2/3
0 . For lower #∗, the dependence on N0 differs. As an attempt

at obtaining a better collapse of the data, we have plotted in figure 10(b) N
2/3
0 (1−N∗)

as a function of t∗ for N0 = 500 and 5000 and for different #∗. For #∗ # 50, the
dependence of (1 − N∗) on N0 is correctly approximated by the scaling ∝N

−2/3
0 , and

the data obtained for different N0 gather on the same curve, whereas for lower #∗, the
dependence on N0 differs, and the data obtained for different N0 are clearly separated.

4.4. Breakup

A physical picture of the mechanisms affecting the particle leakage, the evolution
towards a torus and the breakup can be obtained from a visualisation of the flow
field inside and outside the cloud.

When macro-scale inertia is dominant, Bosse et al. (2005b) have shown that the
initially spherical cloud flattens into an oblate shape featuring a growing dimple at its
rear, which eventually leads to the later evolution towards a torus. The different flow
fields in figure 8 of their paper show the breakup transition from a closed toroidal
vortex to an open ring vortex in which streamlines start to pass through the cloud
centre hole, anticipating the torus disintegration.

Similar features are observed in the regime in which micro-scale inertia is dominant.
Figure 11 shows the successive flow fields computed in a vertical plane passing through
the vertical axis of symmetry in the instantaneous reference frame of the cloud for
#∗ = 1 and 20. This vertical plane is meshed, and the local velocities are obtained by
summing the velocity disturbances (Oseenlets) of all the particles.

The source-wake character of the Oseen flow field at the micro-scale is a
fundamental ingredient for the understanding of the evolution of the cloud, as it
impacts on the flow field at the macro-scale. In particular, at early times, pure fluid
is pulled inside the cloud from behind in a region close to the vertical axis, which
leads to the further evolution towards a torus (see figure 11a,c at t∗ =0 and 17 for
#∗ = 1). This mechanism for torus formation differs fundamentally from that observed
in the Stokes regime. While in the Stokes regime, torus formation is due to particle
depletion near the vertical axis caused by particle leakage (Metzger et al. 2007), here
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Figure 11. Flow field computed at successive times in the vertical plane through the vertical
axis of symmetry in the cloud reference frame: (a, c, e) #∗ = 1 and N0 = 2000; (b, d, f ) #∗ = 20
and N0 = 2000. High (low) velocity is indicated in white (dark). The complete dynamics is
shown in supplementary movies 4 and 5.

in the inertial regimes it is due to fluid inflow at the rear of the cloud. When inertia
is increased, particle leakage is indeed drastically reduced, as the particles cannot
escape from the cloud owing to this inflow. This inflow can also be detected in the
experiments for #∗ ∼ 1, as particles belonging to the initial tail are caught back inside
the settling cloud (see supplementary movie 2).

After the formation of the torus, the cloud expands laterally. Again, the breakup
mechanisms in the inertial and Stokes regimes are dissimilar. While in the Stokes
regime, in order to break up the cloud needs to reach a critical aspect ratio to allow
streamlines to pass through its centre hole, here in the inertial regime, streamlines can
go inside the cloud without instantaneously inducing breakup. As seen in figure 11(c)
at t∗ = 17 for #∗ = 1, the front-incoming streamlines can enter the cloud, but the rear-
incoming streamlines are still pulling fluid inside, which prevents the front inflow from
going all the way through the cloud. The same behaviour but with lesser strength is
seen in figure 11(d ) at t∗ = 157 for #∗ = 20. Consequently, the front streamlines are
turning sideways. This increases the cloud’s lateral expansion until a greater aspect
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N0 #∗ Rec φ (%) γb

Oseenlet simulations
1000 1 – – 2.64 ± 0.24
1000 5 – – 1.98 ± 0.22
1000 10 – – 1.60 ± 0.17
1000 20 – – 1.53 ± 0.16
1000 1000 – – 1.65 ± 0.24
5000 1 – – 3.16 ± 0.42
5000 5 – – 1.92 ± 0.25
5000 10 – – 1.62 ± 0.13
5000 20 – – 1.49 ± 0.11
5000 1000 – – 1.47 ± 0.15

Simulation of
Bosse et al. (2005a,b)

100 096 2634 1 2 2.98
Experiments

400 ± 115 0.8 ± 0.07 11.8 ± 1.9 50 ± 5 2.63 ± 0.70
2570 ± 1250 3.8 ± 0.6 10.5 ± 2.9 50 ± 5 2.96 ± 0.76
4000 ± 1300 4.9 ± 0.5 12.0 ± 3.2 50 ± 5 2.29 ± 0.60
4690 ± 2500 26 ± 4.9 2.9 ± 1.2 50 ± 5 3.16 ± 1.15
1230 ± 470 275 ± 20 0.14 ± 0.08 7 ± 2 2.90 ± 0.40
2750 ± 1200 1740 ± 146 0.053 ± 0.024 7 ± 2 2.92 ± 0.57

Table 3. The critical aspect ratio γb at breakup for the Oseenlet simulations, the simulations
of Bosse et al. (2005a,b) and the experiments. For the Oseenlet simulations, the uncertainty
represents the dispersion (one standard deviation) over five runs. For the simulations of
Bosse et al. (2005a,b), uncertainties are unknown, since only one simulation is available. For
experimental data, uncertainties represent the dispersion (one standard deviation) obtained
over different runs. For the Oseenlet simulations, data for Rec and φ are missing because
these quantities require knowledge of the particle radius, which is missing in the point-particle
simulations.

ratio, for which the front streamlines can finally poke through the cloud and induce
breakup, is reached.

The values for the critical aspect ratio γb at breakup are reported in table 3 for the
Oseenlet simulations, for the available simulation of Bosse et al. (2005a,b) and for six
different sets of experiments corresponding to the regimes identified in figure 1. Data
coming from the Oseenlet simulations confirm the tendency to break up at larger
γb for smaller #∗ (note that data for Rec and φ are not reported for the Oseenlet
simulations because these quantities require knowledge of the particle radius, which
is missing in the point-particle simulations). When macro-inertia is important, the
simulation of Bosse et al. (2005a,b) indicates that breakup occurs for a large γb = 2.98.
Despite large scatters, the experimental data seem to present larger values than those
of the Oseenlet simulations, except for #∗ ≈ 0.8 where the experimental γb = 2.63±0.70
is in remarkable agreement with the numerical γb = 2.64 ± 0.24 (Oseenlet simulation
for N0 = 1000 and #∗ = 1).

Another important quantity which characterises the lifetime of the cloud is the
breakup time tb, i.e. the time for which the torus starts to bend to break up into
secondary droplets. In the Stokes regime, the breakup time normalised by the Stokes
time of the cloud, t∗

b , depends only on N0. As explained in § 1, when weak inertia is
present (but still St ) 1), dimensional analysis indicates that there are two additional
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Figure 12. Normalised breakup time t∗
b versus (a) cloud Reynolds number Rec and (b)

normalised inertial length #∗. The symbols are the same as in figure 1 with the addition of
those in figure 6 for the Oseenlet simulations with different N0. The Stokeslet simulations with
N0 = 1000 are denoted as the dashed lines, those with N0 = 3000 as the dash-dotted line, those
with N0 = 5000 as the dotted line and those with N0 = 7500 as the solid line. The error bars
are indicated for some data points.

dimensional numbers that we can choose conveniently to be the cloud Reynolds
number Rec and the normalised inertial length #∗.

The normalised breakup time t∗
b is plotted versus Rec in figure 12(a). At low Rec, i.e.

Rec " 0.1, the data (light-grey triangle) gather on a single curve showing a decrease
of t∗

b with increasing Rec. For Rec # 0.1, this curve divides into two branches. The
lower branch contains the data located in the regime of macro-scale inertia (dark-
grey triangles), while the upper branch comprises those belonging to the regime of
micro-scale inertia (black circles) and its border (dark-grey circles). Note that the
numerical datum (square) of Bosse et al. (2005b) is slightly larger than the lower
branch (dark-grey triangles) but nonetheless provides the correct order of magnitude.

The normalised breakup time t∗
b is plotted versus #∗ in figure 12(b). This figure

again shows a clear division between the experimental data lying in the two regimes of
macro-scale (dark-grey triangles) and micro-scale (black circle) inertia. For #∗ # 1000,
the Oseenlet simulations tend towards the Stokeslet simulations and t∗

b increases with
N0, as previously found by Metzger et al. (2007). Good agreement is obtained with the
experimental data belonging to the Stokes regime (asterisks and light-grey triangles;
note that the data labelled with the light-grey triangles result from two different sets
of experiments: a set corresponds to #∗ ≈ 300 with N0 ≈ 650 and another to #∗ # 1000
but with N0 ≈ 2900 and Rec ≈ 0.1, thus lying just at the border between the Stokes
and macro-scale-inertia regimes). As #∗ is decreased, t∗

b becomes independent of N0.
The numerical results gather on a single curve presenting a decrease with decreasing
#∗. Excellent quantitative agreement is found with the experimental data belonging
to the regime of micro-scale inertia (black circles) and its border (dark-grey circles).

5. Conclusions
By performing experimental investigations as well as numerical simulations, we

have examined the dynamics of clouds of particles at small but finite Reynolds
number. While at zero Reynolds number the dynamics of falling clouds of particles is
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governed only by the initial number of particles (N0), the dynamics of falling clouds
at small but finite Reynolds number (with St ) 1) is governed by two additional
dimensionless parameters, namely the cloud Reynolds number (Rec) and the inertial
length normalised by the initial radius of the cloud (#∗ = #/R0).

We identified different regimes: a Stokes regime for low Rec < 0.1 and large #∗ > 10
which splits into two inertial regimes in which macro-scale inertia and micro-scale
inertia become successively dominant. If the Reynolds number at the cloud scale, Rec,
is large (Rec > 0.1) but the inertial length is still large (#∗ > 10), macro-scale inertia
is dominant, while if #∗ < 10, micro-scale inertia prevails, and the cloud is driven by
far-field Oseen interactions.

In both inertial regimes, the cloud is seen to flatten and to transition into a torus
which further widens and eventually breaks up into droplets. While this evolution
resembles that observed in the Stokes regime, the physical mechanisms involved are
qualitatively different. Whereas in the Stokes regime the evolution towards a torus
shape is due to particle depletion near the vertical axis caused by particle leakage, here
in the inertial regimes it is due to fluid inflow at the rear of the cloud. A consequence
is that particle leakage diminishes with increasing inertia. The breakup processes also
differ. Whereas in the Stokes regime the breakup occurs for a critical aspect ratio for
which the front-incoming streamlines are able to poke through its centre, it happens
at a larger aspect ratio in the inertial regime because the front-incoming flow has to
overcome the rear-incoming flow.

As inertia is increased, the evolution of the cloud deformation is accelerated, and
the dependence on the initial number of particles within the cloud, N0, becomes
weaker. This general evolution is found to be qualitatively similar in regimes of both
macro- and micro-scale inertia. However, quantitative differences are observed. This
is particularly in evidence in the variation of the breakup time with Rec or #∗, where
one can clearly identify a division between the data corresponding to the regimes
of macro- and micro-scale inertia. The experiments are in good agreement with
the simulations of Bosse et al. (2005a,b) in the macro-scale-inertia regime and with
the Oseenlet simulations inspired by Subramanian & Koch (2008) in the micro-
scale-inertia regime.

Supplementary movies are available at journals.cambridge.org/flm.
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