Response of rocky shore communities to anthropogenic pressures in Albania (Mediterranean Sea): ecological status assessment through the CARLIT method

Aurélie Blanfuné, Charles François Boudouresque, Marc Verlaque, Sajmir Beqiraj, Lefter Kashta, Ina Nasto, Stela Ruci, Thierry Thibaut

To cite this version:

Aurélie Blanfuné, Charles François Boudouresque, Marc Verlaque, Sajmir Beqiraj, Lefter Kashta, et al.. Response of rocky shore communities to anthropogenic pressures in Albania (Mediterranean Sea): ecological status assessment through the CARLIT method. Marine Pollution Bulletin, Elsevier, 2016, 10.1016/j.marpolbul.2016.05.041. hal-01436150v2

HAL Id: hal-01436150

https://hal-amu.archives-ouvertes.fr/hal-01436150v2

Submitted on 7 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Response of rocky shore communities to anthropogenic pressures in Albania (Mediterranean Sea): Ecological status assessment through the CARLIT method

Aurélie Blanfuné a,*, Charles François Boudouresque a, Marc Verlaque a, Sajmir Beqiraj b, Lefter Kashta c, Ina Nasto d, Stela Ruci b, Thierry Thibaut a

a Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France
b Biology Department, Faculty of Natural Sciences, University of Tirana, Bulevardi Zog I, 25/1, 1001 Tirana, Albania
c Research Center for Flora and Fauna, Faculty of Natural Sciences, University of Tirana, Bulevardi Zog I, 25/1, 1001 Tirana, Albania
d Biology Department, Faculty of Technical Sciences, University of Vlora “Ismail Qemali”, Sheshi Pavaresia, Vlore, Albania

A R T I C L E I N F O

Article history:
Received 5 April 2016
Received in revised form 6 May 2016
Accepted 14 May 2016
Available online xxxx

Keywords:
Albania
Anthropogenic pressures
MPA
CARLIT index
Cystoseira amentacea
Lithophyllum byssoides
Mediterranean

A B S T R A C T

The lower mid-littoral and shallow subtidal communities were studied in the district of Vlora (Albania), three years after the establishment of a Marine Protected Area, with particular attention to the long-lived species. The bioconstructions built in the mid-littoral zone by the calcified rhodobiont Lithophyllum byssoides were in poor condition and sometimes even dead. In contrast, the brown alga Cystoseira amentacea constituted lush stands. For assessing the ecological status of the studied area, the CARLIT method, based upon macroalgal communities, was applied. The observed range of ecological status was wide (‘high’ through ‘bad’) and was overall among the lowest assessed to date in the Mediterranean Sea. The occurrence of extensive sea-urchin barren grounds, though not taken into consideration by the CARLIT index, confirmed the poor condition of large sectors of the study area. Overall, the CARLIT index is well correlated with anthropogenic pressures, as assessed by the LUSI index.

© 2016 Published by Elsevier Ltd.

1. Introduction

The Mediterranean Sea is a hotspot of marine biodiversity that is under siege due to high demographic pressure, a high percentage of worldwide shipping and tourism and the highest worldwide rate of biological invasions (Bianchi and Morri, 2000; Gaill, 2000; Boudouresque and Verlaque, 2002; Boudouresque, 2004; Lotze et al., 2006; Coll et al., 2010, 2012; Lejeune et al., 2010; Zenetos et al., 2010; UNEP/MAP, 2012; Bianchi et al., 2014; Giakoumi et al., 2015). Different pressures act over time and in unison, with possible synergy effects, to affect the species, the ecosystems and their ability to deliver ecosystem services (e.g. Worm et al., 2006; Halpern et al., 2008; Waycott et al., 2009).

Within the framework of the Water Framework Directive (WFD, 2000/60/EC) (E.C., 2000) of the European Union (EU), several indices based upon marine indicator species have been proposed to assess the ecological status of coastal water bodies, e.g. the CCO index (Cover, Characteristic species, Opportunistic species), based upon intertidal seaweeds along the European Atlantic coasts (Ar et al., 2016) and the EEI (Ecological Evaluation Index, based upon macroalgae), PREI (Posidonia oceanica Rapid Easy Index, based upon the P. oceanica seagrass), R-MaQUI (based upon lagoon macrophytes), MAES (for mesophotic assemblages between 50 and 150 m depth, based upon ROV-imagery) and CARLIT (Cartography Littoral), based upon mid-littoral and shallow water species for the Mediterranean coasts (Orfanidis et al., 2003; Ballesteros et al., 2007; Sfriso et al., 2007; Gobert et al., 2009, Nikolić et al., 2013; Cánovas et al., 2016). The indicator species of good ecological status used for the CARLIT index (Ballesteros et al., 2007) are the long-lived species, i.e. seagrasses, Lithophyllum byssoides (Lamarck) Foslie (Rhodobionta, Archaeplastida) and Cystoseira spp. (Phaeophyceae, Stramenopiles), which are usually regarded as sensitive to pollution and coastal development. For this reason, they were included within the Berne Convention on the conservation of European wildlife and natural habitats (Appendix I: strictly protected flora species) (Council of Europe, 1979) and the Barcelona Convention for the protection of the marine environment and the coastal regions of the Mediterranean (Annex II: ‘Endangered or threatened species that the Parties shall manage with the aim of maintaining them in a favourable state of conservation’) (Barcelona Convention, 1976, 1996).

Lithophyllum byssoides (synonym Lithophyllum lichenoides) is a calcified red alga that thrives exclusively within a narrow vertical range a few centimetres above the mean sea-level (lower mid-littoral zone sensu Pérès, 1982). It is the ecosystem engineer of the Lithophyllumtum lichenoidis Giaccone 1993 association (Giaccone et al., 1993) that harbours both marine and terrestrial taxa (Molinier, 1958, 1960). Its mid-littoral location exposes it to sea-surface pollution. Under suitable

* Corresponding author.
E-mail address: aurelie.blanfune-thibaut@mio.osupytheas.fr (A. Blanfune).
environmental conditions (unpolluted, dim light and high hydrodynamics), it can constitute large bioconstructions referred to as Lithophyllum byssoides rims (Picard, 1954; Blanc and Molinier, 1955; Ballesteros, 1984; Laborel et al., 1994a). Due to the very narrow vertical distribution range (± 10 cm) of L. byssoides and to its slow growth rate (Faivre et al., 2013; Thibaut et al., 2013), such bioconstructions require a long period of relative stabilisation of the sea-level to settle. Consequently, L. byssoides rims are valuable indicators of near-stable or slowly rising sea-level and high sea-water quality over long periods (Laborel et al., 1983, 1993, 1994b; Morhange et al., 1992; Morhange, 1994; Laborel and Laborel-Deguen, 1996; Bressan et al., 2001; Faivre et al., 2013).

Species of the genus Cystoseira C. Agardh (Phaeophyceae, Stramenopiles) are canopy forming brown algae dominating several assemblages from the subtidal fringe (<1 m below the mean sea level) down to the lower limit of the ephotic zone (infralittoral and circalittoral zone sensu Pérès, 1982) (Feldmann, 1937; Molinier, 1960; Pignatti, 1962; Verlaque, 1987; Ballesteros, 1988, 1990a, 1990b; Giaccone et al., 1994). The zonation and the extension of these assemblages are under the control of a range of environmental conditions (light, temperature, hydrodynamics, water quality and grazing) (Sauvageau, 1912; Ollivier, 1929; Vergés et al., 2009). Among the Cystoseira species, Cystoseira amentacea [previously referred to as Cystoseira stricta (Montagne) Sauvageau and Cystoseira spicata Ercegović] is a species widely distributed in the Mediterranean Sea. It belongs, like Cystoseira mediterranea Sauvageau and Cystoseira tamariscifolia (Hudson) Papenfuss, to a morphological group restricted to the subtidal fringe, (Sauvageau, 1912; Feldmann, 1937; Ribera et al., 1992). Cystoseira amentacea is the ecosystem engineer of the Cystoseirietae stricta Molinier, 1956 association, which harbours hundreds of species and can occupy extensive zones of wave-exposed shallow hard substrates (Molinier, 1960; Bellan-Santini, 1968; Boudouresque, 1971a, 1971b).

Albania has about 427 km of coastline facing the Adriatic and Ionian seas, within the Mediterranean Sea. The marine environment of the Albania coast varies widely from north to south. The Adriatic northern part is dominated by shallow waters, sandy beaches, sandspits, wetlands and lagoons, whereas the Ionian southern part is a rugged rocky coast with high reliefs and caves (Tilot and Jeudy de Grissac, 1994). Located in the middle part of Albania, the city of Vlora is the second largest port (for trade and fisheries) in the country and one of the most attractive tourism resorts in the eastern part of the Mediterranean Sea (Frascetti et al., 2011). The residential population is about 150,000 inhabitants and about 2 million tourists were accommodated in 2008 (INSTAT, 2008). The north and south coasts of the Bay of Vlora are occupied by extensive beaches. Facing Vlora, Szazani Island and the Karaburuni Peninsula are composed mainly of Cretaceous limestone rocks. In contrast with Vlora, the rural population of Szazani Island and the Karaburuni Peninsula is low, with 5–20 inhabitants km−2. Szazani Island is military territory and Karaburuni Peninsula was declared a natural reserve in 1966. In April 2010, the coastal and marine area of Szazani Island and the Karaburuni Peninsula were raised to the status of Marine Protected Area (MPA), which is the first and the only existing MPA in Albania (Kasha et al., 2011).

Only a very few data sets regarding the presence, abundance and patterns of distribution of marine species and communities were available in this area, these being 3 seaweed checklists (Kasha, 1986; Kupe and Miho, 2006; Antolić et al., 2010), an in-depth study of the genus Cystoseira (Ercegović, 1952) and a general assessment of biodiversity and communities (Frascetti et al., 2011).

The aim of the present study was to assess (i) the distribution and state of conservation of the Lithophyllum byssoides rims, the Cystoseira amentacea stands and shallow subtidal communities (ii) the ecological status of coastal waters of the region by means of the CARLIT method, especially along the coastline of Szazani Island and Karaburuni Peninsula, after the establishment of the MPA, (iii) the comparison between two methods of calculation of the CARLIT index (Ballesteros et al., 2007; Nikolić et al., 2013), and (iv) the congruence of the CARLIT index versus two proxies of anthropogenic pressure (Lopez y Royo et al., 2009; Flo et al., 2011).

2. Materials and methods

2.1. Sampling sites

The study was conducted in May 2013 in the district of Vlora (Albania, Mediterranean Sea). Most of the study area was located within the MPA of Szazani Island and the Karaburuni Peninsula (Fig. 1). The shore south to Orso Bay, though belonging to the MPA, was not explored. Although L. byssoides and C. amentacea are perennial and long-lived species that can be observed year round, late spring is the most suitable period for such field work, as erect branches of C. amentacea are then fully developed.

2.2. Identifying ecological regions in the studied area

No coastal water bodies have been previously delineated in Albania, a country which does not belong to the EU, and is not bound to apply the European WFD requirements. We therefore undertook the following delineation by coastal water bodies according to the ridgelines watershed: the western and northern shores of Karaburuni Peninsula, the eastern shore of Karaburuni Peninsula and the southern and eastern shores of the Bay of Vlora, the western and the eastern shores of Szazani Island (Fig. 1).

2.3. Mapping of lower mid-littoral and shallow subtidal communities

The geomorphological characteristics of the shoreline were drawn on black and white A3 format aerial photographs from Google Earth®. The scale was 1:2500. Three observers worked on board a small boat (length 5 m) moving at low speed (3 to 6 km h−1) a few metres from the shore. The species and communities were entirely mapped. Observations were entered within a Geographical Information System (GIS) database (ArcGis10®), allowing the extraction of latitude and longitude of each location, using the coordinate system WGS-1984-UTM-zone-34N.

The Lithophyllum byssoides rims of measurable size (i.e. at least 0.2 m width and 1 m long) and with a distinct overhang were exhaustively mapped and their vitality was visually assessed (alive rims vs dead).

Among the shallow subtidal communities, down to 2-m depth, we mapped Cystoseira amentacea, Cystoseira compressa, Corallina caespitosa, Mytilus galloprovincialis, the mosaic of stands of other erect macroalgae and the barren grounds of encrusting corallines with the sea urchins Paracentrotus lividus (Lamarck, 1816) and Arbacia lixula (Linnaeus, 1758). For taxonomic and nomenclatural purposes, the worldwide electronic database algaebase.org (Guiry and Guiry, 2015) was followed.

2.4. Ecological status assessment

The ecological status of coastal water bodies of the study area was assessed by means of the CARLIT method (Ballesteros et al., 2007). The CARLIT method is based upon the mapping of geomorphological characteristics obtained in the field (slope, morphology and natural/artificial substrate) and some mid-littoral and shallow subtidal species and communities of the rocky shoreline.

Six relevant geomorphological situations identified by Ballesteros et al. (2007), according to the coastline morphology and natural/artificial substrates (Table S1), were mapped.

The species and communities taken into account, according to a decreasing level of sensitivity (5K from 20, very sensitive, to 1, not sensitive) to disturbance, are listed in Table S2.

For each geomorphological situation, the length of the coast occupied by each community type was measured and the ecological quality...
value (EQ) was calculated using the formula:

\[
EQ_{ssi} = \frac{\sum (l_j \times SL_j)}{\sum l_j}
\]

where \(i\) is the geomorphological situation; \(EQ_{ssi}\) is the ecological quality value of the geomorphological situation \(i\); \(l_j\) is the length of the coastline with the species/community \(j\); \(SL_j\) is the sensitivity level of the species/community \(j\) (Table S2) and \(\sum l_j\) is the total length of the coastline occupied by the geomorphological situation \(i\).

According to the WFD, the ecological status of a coastal water body has to be expressed in terms of ecological quality ratios (EQR). This ratio indicates the relationship between the value of the biological parameters (here species and communities) recorded for a given coastal water body and the value for these parameters in the reference conditions applicable to this body.

The EQR (Ecological Quality Ratio) of the geomorphological situation of a coast is calculated as the ratio between the EQ obtained (\(EQ_{ssi}\)) and the EQ obtained in the reference sites corresponding to the same 'geomorphological situation' (\(EQ_{rsi}\)) (Table S1). Therefore, the EQR of a coast corresponding to a coastal water body is calculated according to the following formula:

\[
EQR = \frac{\left(\sum (EQ_{ssi}/EQ_{rsi}) \times 1_j\right)}{\sum l_j}
\]

where \(i\) is the geomorphological situation; \(EQ_{ssi}\) is the EQ at the study site for the geomorphological situation \(i\); \(EQ_{rsi}\) is the EQ at the reference sites for the geomorphological situation \(i\); \(l_j\) is the coastal length occupied by the geomorphological situation \(i\) (\(l_j = \sum l_j\)) and \(\sum l_j\) is the total length of the coastline of the coastal water body (\(\sum l_j = \sum \sum l_j\)).

The EQR is expressed as a numerical value between 0 and 1. The ecological status of a coastal water body is defined as follows:

<table>
<thead>
<tr>
<th>EQR</th>
<th>Ecological status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to >0.75</td>
<td>High</td>
</tr>
<tr>
<td>0.75 to >0.60</td>
<td>Good</td>
</tr>
<tr>
<td>0.60 to >0.40</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.40 to >0.25</td>
<td>Poor</td>
</tr>
<tr>
<td>0.25 to 0.0</td>
<td>Bad</td>
</tr>
</tbody>
</table>

Nikolić et al. (2013) developed a slightly modified CARLIT index for the eastern Adriatic Sea. The equations and the rationale are the same as described by Ballesteros et al. (2007). The differences lie in the geomorphologically relevant situations (Table S3) and in some species and communities, in their sensitivity levels (Table S4). The two methods of calculation of the CARLIT Index have been applied to the same database and water bodies.

2.5. Assessment of anthropogenic pressures

A water quality assessment of coastal water bodies must be done in relation to anthropogenic pressures. The assessment of known pressures that could affect the water quality within the study area was performed using the land use pressures according to CORINE Land Cover information system 2000–2006 (Büttner et al., 2004; CORINE Land Cover, 2006). We considered maps of the coast spanning a 1 km wide strip along each coastal water body: the western and northern shores of Karaburuni Peninsula, the eastern shore of Karaburuni Peninsula, the southern and eastern shores of the Bay of Vlora, and the western and the eastern shores of Sazani Island.

Land uses simplified index (LUSI) was calculated according to Flo et al. (2011). Assessment of anthropogenic pressures on the coastal zone by calculating the LUSI index using the publicly available data is described in UNEP/MAP (2011). In the present study, we used the adaptation of LUSI index proposed by Nikolić et al. (2013) (Table S5).
For each coastal water body all scores for pressure were summed. Afterwards, a correction was applied to this sum in order to take into account the degree of confinement that could emphasize or diminish the effect of these pressures on the water body. Depending on the concave, convex or straight shape of the coastal line, the sum was multiplied by the correction factor 1.25, 0.75 or 1.00 (Table S5).

\[
\text{LUSI Index} = \frac{(A + B + C + D)}{E}
\]

In addition to the LUSI index, which provides a quantitative value assessing the anthropogenic pressures, we also tested the qualitative index proposed by Lopez y Royo et al. (2009) based on the surface area occupied by urban, agricultural and industrial activities using the Google-Earth images (for further details see Lopez y Royo et al., 2009).

3. Results

3.1. Distribution and state of conservation of Lithophyllum byssoides rims

In the lower mid-littoral zone, L. byssoides was widespread. In 96 localities, it has built bioconstructions larger than 0.2-m wide and 1-m long for a cumulative length of ~2.5 km for a total coastline length of ~68 km, which represents 3.6% of the rocky coastline (Fig. 2, Table S6). Most of the L. byssoides rims were facing W and NW (Fig. 2). Although large L. byssoides rims, up to ~1-m wide, were previously reported in the study area (Tilot and Jeudy de Grissac, 1994), most L. byssoides rims were relatively narrow with a width of <0.5 m.

At Sazani Island, especially in its southern part, a number of L. byssoides rims were in very poor condition (Fig. 2: arrows). They were located at a relatively low tide level, resulting in an unusually frequent covering by the sea water, even under calm conditions. They were deeply bored by holes and a network of blow-holes, making some of them a veritable lacework of calcareous bioconstruction. Lastly, their upper side was densely coated with perennial macroalgae, especially Corallina caespitosa, a species previously misidentified as C. mediterranea or C. elongata, and commonly used as a proxy of the upper limit of the subtidal zone. The vitality of these L. byssoides rims was considered as nil and their status as dead (fossil L. byssoides rims). In contrast, at Karaburuni Peninsula and in the north of Sazani, the upper side of the rim showed a more or less continuous cover of living L. byssoides, and the rims were considered as alive (Fig. 2: solid circles). However, with regard to the fossil L. byssoides rims, they were often perforated by a network of holes, so their health status was considered as intermediate.

3.2. Distribution of Cystoseira amentacea stands and shallow subtidal communities

Cystoseira amentacea is well-distributed on the western and northern sides of the Karaburuni Peninsula and the western part of Sazani Island. On the eastern side of the Karaburuni Peninsula, C. amentacea populations are less continuous and are replaced southwards by C. compressa (Fig. 3).

Beyond the L. byssoides rims and the C. amentacea stands, either barren-grounds or stands of erect macroalgae were present, except in front of the totally artificialized north-eastern part of Sazani Island that is occupied by the concrete bunkers and reclamations of a military base, with no macroscopic marine stands. Barren-grounds were characterized by encrusting corallines and sea urchins, Paracentrotus lividus and Arbacia lixula. These barren-grounds thrived from ~30 cm below the subtidal fringe down to at least 2 m depth. They occurred on the eastern side of the Karaburuni Peninsula and the western side of Sazani Island (Fig. 3). Along the rocky shores of the southernmost part of the Bay of Vlora, the barren-grounds extended up to the sea surface. Stands of erect macroalgae consisted in a patchwork of species, mainly Corallina caespitosa, Halopteris scoparia (Junnæus) Sauvageau, Padina sp., Dictyota spp. and four species of the genus Cystoseira: C. barbata

Fig. 2. Distribution and vitality of Lithophyllum byssoides rims in the study area (for exact location, see appendix S6). When two or more L. byssoides rims are too close to be separately represented, they are depicted by a larger solid circle.
Fig. 3. Distribution of Cystoseira amentacea, C. compressa, mosaic stands of erect macroalgae, barren-grounds and reclamation and artificialized coastline in the study area.

Fig. 4. Ecological Quality Ratio (EQR) and ecological status of the different coastal water bodies of the study area in 2013, according to the Ballesteros et al. (2007) CARLIT method.
The ecological status of the northern and western shores of the Karaburuni Peninsula and of the western shore of Sazani Island was high. In contrast, the three other coastal water bodies fell within the bad to moderate ecological status range (Fig. 4, Table 1). Except for one coastal water body (eastern shore of Karaburuni Peninsula), the ecological status was identical whatever the CARLIT index calculation used (Ballesteros et al., 2007 versus Nikolić et al., 2013); however, the Nikolić et al. (2013) EQR was often higher (Table 1).

In order to validate the use of the CARLIT index, the EQR values (calculated for both CARLIT methods) were compared with values of LUSI (Land Uses Simplified Index) and Lopez y Royo et al. (2009) pressure index obtained for each coastal water body (Table 1). The calculated EQR values were significantly correlated with the LUSI index \(r = 0.85 \), with Ballesteros et al., 2007 method; \(r = 0.87 \), with Nikolić et al., 2013 method; both being significant, \(p < 0.001 \) confirming a good response of the CARLIT method to the different levels of disturbance.

It is worth noting that, in contrast, the Lopez y Royo et al. (2009) pressure index was more roughly linked to the calculated EQR values than the LUSI index (for the both CARLIT methods) (Table 1), indicating the poorer efficiency of the former.

4. Discussion

The lower mid-littoral and shallow subtidal communities (0–2 m depth) were studied in the district of Vlora (Albania), three years after the establishment of a Marine Protected Area.

In the lower mid-littoral zone, \(L. byssoides \) rims represented 3.6% of the coastline, a significant value although lower than some percentages previously measured in the western Mediterranean (Table 2). Most of the \(L. byssoides \) rims were facing W and NW, which is consistent with the wave exposure and the dim light conditions required by the species and the distribution described in other Mediterranean regions (Molinier, 1960; Sicic, 1967; Bianconi et al., 1987). They were narrow (<0.5 m wide) while much wider \(L. byssoides \) rims have been described in the Mediterranean Sea (Bianconi et al., 1987; Laborel, 1987; Monbailliu and Torre, 1990; Laborel et al., 1994a; Harmelin et al., 1996; Boudouresque, 2003; Faivre et al., 2013). Many \(L. byssoides \) rims were dead or in very bad status with frequently a network of holes. Several possible causes of regression of \(L. byssoides \) rims have been reported in the literature, namely trampling, sea surface pollution and the worldwide rise in sea-level (Verlaque, 2010; Faivre et al., 2013; Thibault et al., 2013). In the study area, the absence of wide \(L. byssoides \) rims, the steep shore profile and the difficulties of berthing or reaching these bioconstructions from the land, mean that trampling can be ruled out as a possible cause of degradation. Pollution which enhances the development of bioeroder organisms and the formation of holes (Laborel, 1987; Morhange et al., 1992; Laborel et al., 1994a, 1994b; Riggio et al., 1994; Boudouresque, 2003), is a better candidate because the waters of the Bay of Vlora are impacted by inputs of numerous pollutants from unmanaged expanding urbanization, the navy base at Karaburuni, maritime traffic, environmentally uncontrolled touristic pressure and sewage from a hydrochloric acid factory (Tilott and Jeudy de Grissac, 1994; Fraschetti et al., 2011). Finally, all Mediterranean \(L. byssoides \) rims were formed during the stabilisation or the slow rising of the sea-level throughout the Little Ice Age (LIA) (late 13th through early 19th centuries). The current acceleration of the worldwide rise in sea-level (3.3 mm a\(^{-1}\) between 1939 and 2009; Nicholls and Cazenave, 2010) would appear to be too rapid for the growth capacities of \(L. byssoides \) rims (Verlaque, 2010; Faivre et al., 2013; Thibault et al., 2013). In the study region, the occurrence of subtidal species on the upper side of the lowest \(L. byssoides \) rims agrees well with this hypothesis. Similar submersion of \(L. byssoides \) rims has already been reported in the central Adriatic Sea (Faiivre et al., 2013) and in the northwestern Mediterranean basin (Thibault et al., 2013). The co-occurrence, in the same area, of \(L. byssoides \) rims in good and bad conditions could be due to different wave exposure; under highly exposed conditions, the rims are located higher, and are therefore less vulnerable to the sea level rise, than under less exposed conditions.

Cystoseira amentacea stands were well distributed in the study area, especially on the western and northern shores of the Karaburuni Peninsula and the western part of Sazani Island. The species has long been considered as highly sensitive to anthropogenic pressures, e.g. pollution, resulting in dramatic regression events (Bellan-Santini, 1966; Janssen et al., 1993; Soltan et al., 2001; Boudouresque, 2003). In the southern Adriatic Sea, Falace et al. (2010) mention local regressions near Torre Guaceto but also extensive populations forming a continuous belt along the Apulian coast. In fact, an extensive mapping of northwestern Mediterranean populations (Southern France and Corsica) revealed that *C. amentacea* still formed an almost continuous belt in most suitable habitats, despite pollution and coastal development (Thibault et al., 2007, 2014, 2015). The disappearances of *C. amentacea* stands were only restricted to coastal artificialized areas (harbours, reclamations) and waters severely polluted by urban and industrial sewage. Accordingly, continuous or almost continuous stands of *C. amentacea* observed in some parts of the study area, although indicating that the water body was not degraded, could not be considered per se as a proxy of pristine waters.

In 1992, some specimens of the mid-littoral fucoide *Fucus virsoides* J. Agardh, an Adriatic endemic species common in the northern part of the Sea (Munda, 1972), were reported in the Bay of Vlora (Kashta, 1986, 1992). This record constituted the southern limit of distribution of the species. No individual of *F. virsoides* was found during our field survey, as already reported by Kashta (1995–1996), which confirms the general decline of the species in the mid-Adriatic Sea (Mačić, 2006; Falace et al., 2010).

Western shore of Sazani Island	0.97	High	1.00	High	0	No pressure
Eastern shore of Sazani Island	0.26	Poor	0.29	Poor	4	Moderate pressure
Western and northern shores of Karaburuni Peninsula	1.00	High	1.00	High	0	No pressure
Eastern shore of Karaburuni Peninsula	0.57	Moderate	0.62	Good	2	High pressure
Southern and eastern shores of the Bay of Vlora	0.22	Bad	0.22	Bad	10	High pressure

Table 1

Comparison of EQR and ecological status of coastal water bodies according to the two CARLIT methods (Ballesteros et al., 2007 and Nikolić et al., 2013) and two indices of anthropogenic pressure: LUSI (calculation method from Nikolić et al., 2013) and the Lopez y Royo et al. (2009) pressure index.
With regard to the large areas covered with barren-grounds, the total lack of environmental management is clearly to be blamed. The regime shift from marine forests to barren-grounds devoid of erect macroalgae is generally linked to the overexploitation of predatory fish, which gives rise to the rapid expansion of herbivorous sea urchin populations (Sala et al., 1998, 2012; Steneck, 1998; Boudouresque and Verlaque, 2013; Ling et al., 2015). Overfishing, not only using fishing nets and trolling but also by means of the illegal use of explosives, and the illegal breaking of shallow water rocks for date mussel harvesting, not only using fishermen themselves and to a student involved in the establishment of the MPA (Simon Moncelon, pers. comm.). Such destructive practices are known to have a dramatic impact on marine Mediterranean communities (Fanelli et al., 1994; Fraschetti et al., 2001; Guidetti and Boero, 2004; Devescovi et al., 2005). In addition, the sedimentary inputs from the Vjosa River, which runs north to Vlora (although the cyclonic general surface circulation flows northwards; Orlić et al., 1992), the pollution from the urban sewer of the Vlora city (Maioranò et al., 2011) and the current increase in tourism pressure might be related with the worsening of coastal water quality in the Bay of Vlora.

The CARLIT index is used in most of the EU Mediterranean countries: Spain, France, Italy, Malta and Croatia (Ballesteros et al., 2007; Buia et al., 2007; Mangialajo et al., 2007; Omrane et al., 2010; Blanfuné et al., 2011; Sfriso and Facca, 2011; Bermejo et al., 2012, 2013; Nikolić et al., 2013; Ferrigno et al., 2014; Thibaut and Blanfuné, 2014). It is here applied for the first time in Albania, a non-EU country. The broad acceptance of this methodology for the assessment of the ecological status of coastal water bodies is due to the fact that (i) it is not destructive (no collection of species required); (ii) the mapping only concerns intertidal and very shallow marine habitats (no SCUBA diving required); (iii) large coastal stretches can be exhaustively explored; (iv) the considered taxa are relatively easy to identify by well-trained observers; (v) the CARLIT index is robust, with the ecological status of a given coastline congruent at a long time scale (Cavallo et al., 2016; Torras et al., 2016).

The ecological status assessed by the CARLIT method was high for the northern and western shores of the Karaburuni Peninsula and the western shore of Sazani Island. In contrast, the three other coastal water bodies fell within the bad to moderate ecological status range. Nikolić et al. (2013) proposed some improvements to the CARLIT method, e.g. a change in the species taken into account and a local adaptation of Ecological Quality values of the relevant geomorphological situation. Measuring the substrate slope for each habitat and community type, as suggested by the authors, was time-consuming and adopting their improvements only had a slight effect on the final assessment.

Overall, the ecological status of the study area was among the worst recorded in the areas already studied in the western Mediterranean basin and the Adriatic Sea (Table 3). Overall, despite the establishment of a MPA in 2010, the ecological status of a large part of the area was still poor or bad in 2013. No improvement was apparent when compared with the 2007 situation (Fraschetti et al., 2011), rather to some degree a decline in status. The same conclusion has been drawn for this area through an assessment of macrobenthos and fish, carried out in June 2015 (Sanmir Bekiraj and Lefter Kashta, unpublished data).

The ecological status of the study area exhibited a good correlation with the LUSI index as a proxy of anthropogenic pressures, as previously evidenced by Bermejo et al. (2013) and Nikolić et al. (2013). In contrast, the Lopez y Royo et al. (2009) pressure index appeared not to be suitable at coastal water body scale.

In the light of the experience gleaned on the occasion of the present study, certain improvements to the method might also be suggested. Firstly, the delineation of 5 categories of abundance of C. amentacea could be usefully simplified into only 2 or 3 categories, as already suggested by Nikolić et al. (2013). Secondly, it might seem logical to lessen
the weight of *C. amentacea* within the index calculation, in light of the fact that the species is less sensitive to water pollution than previously assumed (Thibaut et al., 2014; but see comments below). Thirdly, the presence of *L. byssoides* rims seems to be overweighted, and their death by submersion could be wrongly attributed to a decline in ecological quality, while actually due to the rise in sea level (Fairev et al., 2013; Thibaut et al., 2013). These suggestions, at a broader geographic range (the Adriatic and the Western Mediterranean Basin), will be the subject of further studies.

As regards the weight, possibly too high, of *C. amentacea* within the CARLIT index calculation, it should be considered that the WFD uses the assemblage/habitats/species as indicators of water quality. The WFD says that water quality has to be high enough to not modify the species diversity, functionality and the habitats in the water body. If these three parameters are indistinguishable between a given place and a reference site (i.e. a place where human disturbances are nil or kept at a minimum), and the bioindicators used (in this case macroalgae of the habitats constituted by them) show no differences, it means that the water quality is not affecting the assemblages/habitats, and thus, this is consistent with the aims of the WFD. In this case, there would be no need to downweight the value of *C. amentacea* as the habitat remains unmodified in relation to a pristine place (Enric Ballesteros, pers. comm.). Furthermore, the article that claims that *C. amentacea* is less sensitive to pollution than previously expected (Thibaut et al., 2014) does not provide nutrient or pollution data. Finally, several papers unequivocally relate the effects of increased pollution values with the decline of *C. marinera* (the vicariant species of *C. amentacea* in some areas of the Mediterranean Sea) (Arévalo et al., 2007; Pinedo et al., 2007, 2015).

At present, the Sazani Island–Karaburuni Peninsula MPA established in 2010, is not yet managed as an MPA. The management plan and its implementation are just at their very inception, so that the present study may represent a useful tool to support the implementation of the management plan and as a baseline for future comparisons.

Acknowledgements

This work was funded by the French Coastal Protection Agency (Consevo diere e Littoral et des Rivages Lacustres; in short: Conservatoire du Littoral) within the framework of the Mediterranean Small Islands Initiative PIM. Thanks are due to Michael Paul, an English native speaker, for proof-reading the English and to an anonymous reviewer for valuable comments and suggestions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.marpolbul.2016.05.041.

References

