]. L. Jeuken, Structure and modification of electrode materials for protein electrochemistry ., Advances in biochemical engineering, biotechnology, issue.1, 2016.

M. Frasconi, F. Mazzei, and T. Ferri, Protein immobilization at gold???thiol surfaces and potential for biosensing, Analytical and Bioanalytical Chemistry, vol.16, issue.4, pp.1545-1564, 2010.
DOI : 10.1016/j.snb.2007.07.090

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chemical Reviews, vol.108, issue.7, pp.2379-2438, 2008.
DOI : 10.1021/cr0680742

V. Fourmond, QSoas: A Versatile Software for Data Analysis, Analytical Chemistry, vol.88, issue.10, pp.5050-5052, 2016.
DOI : 10.1021/acs.analchem.6b00224

URL : https://hal.archives-ouvertes.fr/hal-01414965

J. Masa and W. Schuhmann, Electrocatalysis and bioelectrocatalysis ??? Distinction without a difference, Nano Energy, vol.29, 2016.
DOI : 10.1016/j.nanoen.2016.04.007

S. Shleev, V. Andoralov, D. Pankratov, M. Falk, O. Aleksejeva et al., Oxygen Electroreduction versus Bioelectroreduction: Direct Electron Transfer Approach, Electroanalysis, vol.6, issue.10, 2016.
DOI : 10.1039/c3ee00043e

V. Fourmond, M. Sabaty, P. Arnoux, P. Bertrand, D. Pignol et al., Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover., The journal of physical chemistry, pp.3341-3347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677469

M. Merrouch, J. Hadj-saïd, L. Domnik, H. Dobbek, C. Léger et al., Inhibition of Ni-Containing CO Dehydrogenase Is Partly Reversible, Chemistry - A European Journal, vol.181, issue.52, pp.18934-18938, 2015.
DOI : 10.1111/j.1432-1033.1989.tb14744.x

URL : https://hal.archives-ouvertes.fr/hal-01432205

D. Lacey, M. Rousset, B. Guigliarelli, C. Léger, and S. , Dementin, O 2 -independent formation of the inactive states of NiFe hydrogenase, Nature Chemical Biology, vol.9, pp.15-17, 2012.

V. Fourmond, C. Baffert, K. Sybirna, S. Dementin, A. Abou-hamdan et al., The mechanism of inhibition by H 2 of H 2 -evolution by hydrogenases, Chem. Commun, pp.49-6840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268212

A. Kubas, C. Orain, D. De-sancho, L. Saujet, M. Sensi et al., Mechanism of O2 diffusion and reduction in FeFe hydrogenases, Nature Chemistry, 2016.
DOI : 10.1021/ct500594z

URL : https://hal.archives-ouvertes.fr/hal-01406025

P. Kwan, C. L. Mcintosh, D. P. Jennings, R. C. Hopkins, S. K. Chandrayan et al., Exhibits a New Type of Oxygen Tolerance, Journal of the American Chemical Society, vol.137, issue.42, pp.13556-13565, 2015.
DOI : 10.1021/jacs.5b07680

A. Ciaccafava, C. Hamon, P. Infossi, V. Marchi, M. T. Giudici-orticoni et al., Light-induced reactivation of O 2 -tolerant membrane-bound [Ni-Fe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus under turnover conditions., Physical chemistry chemical physics, pp.15-16463, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860457

M. Sensi, C. Baffert, C. Greco, G. Caserta, C. Gauquelin et al., Reactivity of the Excited States of the H-Cluster of FeFe Hydrogenases, Reactivity of the excited states of the H-Cluster of FeFe hydrogenases, pp.13612-13618, 2016.
DOI : 10.1021/jacs.6b06603

URL : https://hal.archives-ouvertes.fr/hal-01400732

P. Rodríguez-maciá, J. A. Birrell, W. Lubitz, and O. Rüdiger, Electrochemical investigations on the inactivation of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans by O 2 or light under hydrogen producing conditions, ChemPlusChem, 2016.

A. I. Yaropolov, A. A. Karyakin, S. D. Varfolomeev, and I. V. Berezin, Mechanism of H2-electrooxidation with immobilized hydrogenase, Bioelectrochemistry and Bioenergetics, vol.12, issue.3-4, pp.267-277, 1984.
DOI : 10.1016/0302-4598(84)87009-9

H. A. Heering, J. Hirst, and F. A. Armstrong, Interpreting the Catalytic Voltammetry of Electroactive Enzymes Adsorbed on Electrodes, The Journal of Physical Chemistry B, vol.102, issue.35, pp.6889-6902, 1998.
DOI : 10.1021/jp981023r

T. Reda and J. Hirst, Interpreting the Catalytic Voltammetry of an Adsorbed Enzyme by Considering Substrate Mass Transfer, Enzyme Turnover, and Interfacial Electron Transport, The Journal of Physical Chemistry B, vol.110, issue.3, pp.1394-1404, 2006.
DOI : 10.1021/jp054783s

C. Léger, A. K. Jones, S. P. Albracht, and F. A. Armstrong, Effect of a Dispersion of Interfacial Electron Transfer Rates on Steady State Catalytic Electron Transport in [NiFe]-hydrogenase and Other Enzymes, The Journal of Physical Chemistry B, vol.106, issue.50, pp.13058-13063, 2002.
DOI : 10.1021/jp0265687

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-State Catalytic Wave-Shapes for 2-Electron Reversible Electrocatalysts and Enzymes, Journal of the American Chemical Society, vol.135, issue.10, pp.135-3926, 2013.
DOI : 10.1021/ja311607s

URL : https://hal.archives-ouvertes.fr/hal-01268145

K. So, R. Hamamoto, R. Takeuchi, Y. Kitazumi, O. Shirai et al., Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase, Journal of Electroanalytical Chemistry, vol.766, pp.152-161, 2016.
DOI : 10.1016/j.jelechem.2016.02.009

S. V. Hexter, F. Grey, T. Happe, V. Climent, and F. A. Armstrong, Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases, Proceedings of the National Academy of Sciences of the United States of America, pp.11516-11521, 2012.
DOI : 10.1021/ac8025702

S. J. Elliott, A. E. Mcelhaney, C. Feng, J. H. Enemark, and F. A. Armstrong, A Voltammetric Study of Interdomain Electron Transfer within Sulfite Oxidase, Journal of the American Chemical Society, vol.124, issue.39, pp.124-11612, 2002.
DOI : 10.1021/ja027776f

C. Léger, F. Lederer, B. Guigliarelli, and P. Bertrand, Electron Flow in Multicenter Enzymes:?? Theory, Applications, and Consequences on the Natural Design of Redox Chains, Journal of the American Chemical Society, vol.128, issue.1, pp.180-187, 2006.
DOI : 10.1021/ja055275z

P. Bianco and J. Haladjian, Electrocatalytic Hydrogen-Evolution at the Pyrolytic Graphite Electrode in the Presence of Hydrogenase, Journal of The Electrochemical Society, vol.139, issue.9, pp.2428-2432, 1992.
DOI : 10.1149/1.2221244

J. Hirst, A. Sucheta, B. A. Ackrell, and F. A. Armstrong, Electrocatalytic Voltammetry of Succinate Dehydrogenase:?? Direct Quantification of the Catalytic Properties of a Complex Electron-Transport Enzyme, Journal of the American Chemical Society, vol.118, issue.21, pp.5031-5038, 1996.
DOI : 10.1021/ja9534361

A. Bassegoda, C. Madden, D. W. Wakerley, E. Reisner, and J. Hirst, and Formate by a Molybdenum-Containing Formate Dehydrogenase, Journal of the American Chemical Society, vol.136, issue.44, pp.15473-15476, 2014.
DOI : 10.1021/ja508647u

J. M. Kurth, C. Dahl, and J. N. Butt, Catalytic Protein Film Electrochemistry Provides a Direct Measure of the Tetrathionate/Thiosulfate Reduction Potential, Journal of the American Chemical Society, vol.137, issue.41, pp.13232-13235, 2015.
DOI : 10.1021/jacs.5b08291

A. J. Bard, G. Inzelt, and F. Scholz, Electrochemical dictionary, 2012.

A. M. Appel and M. L. Helm, Determining the Overpotential for a Molecular Electrocatalyst, ACS Catalysis, vol.4, issue.2, pp.630-633, 2014.
DOI : 10.1021/cs401013v

S. J. Elliott, C. Léger, H. R. Pershad, J. Hirst, K. Heffron et al., Detection and interpretation of redox potential optima in the catalytic activity of enzymes, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1555, issue.1-3, pp.1555-54, 2002.
DOI : 10.1016/S0005-2728(02)00254-2

J. M. Hudson, K. Heffron, V. Kotlyar, Y. Sher, E. Maklashina et al., Fumarate Reductase, Journal of the American Chemical Society, vol.127, issue.19, pp.6977-6989, 2005.
DOI : 10.1021/ja043404q

J. Marangon, P. M. Paes-de-sousa, I. Moura, C. D. Brondino, J. J. Moura et al., Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.7, pp.1817-1072, 2012.
DOI : 10.1016/j.bbabio.2012.04.011

C. W. Lockwood, B. Burlat, M. R. Cheesman, M. Kern, J. Simon et al., Nitrite Reductases, Journal of the American Chemical Society, vol.137, issue.8, pp.3059-3068, 2015.
DOI : 10.1021/ja512941j

URL : https://hal.archives-ouvertes.fr/hal-01435358

E. T. Judd, N. Stein, A. A. Pacheco, and S. J. Elliott, Hydrogen Bonding Networks Tune Proton-Coupled Redox Steps during the Enzymatic Six-Electron Conversion of Nitrite to Ammonia, Biochemistry, vol.53, issue.35, pp.5638-5646, 2014.
DOI : 10.1021/bi500854p

B. Frangioni, P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand et al., In rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer, J. Am. Chem. Soc, pp.126-1328, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00336072

P. Bertrand, B. Frangioni, S. Dementin, M. Sabaty, P. Arnoux et al., Effects of Slow Substrate Binding and Release in Redox Enzymes:?? Theory and Application to Periplasmic Nitrate Reductase, The Journal of Physical Chemistry B, vol.111, issue.34, pp.10300-10311, 2007.
DOI : 10.1021/jp074340j

URL : https://hal.archives-ouvertes.fr/hal-00336030

S. V. Hexter, T. F. Esterle, and F. A. Armstrong, A unified model for surface electrocatalysis based on observations with enzymes, Physical Chemistry Chemical Physics, vol.12, issue.24, pp.11822-11833, 2014.
DOI : 10.1039/c3ee43652g

J. G. Jacques, B. Burlat, P. Arnoux, M. Sabaty, B. Guigliarelli et al., Kinetics of substrate inhibition of periplasmic nitrate reductase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1837, issue.10, pp.1837-1801, 2014.
DOI : 10.1016/j.bbabio.2014.05.357

URL : https://hal.archives-ouvertes.fr/hal-01494456

C. Orain, L. Saujet, C. Gauquelin, P. Soucaille, I. Meynial-salles et al., Demonstrate That the Reaction Is Partly Reversible, Journal of the American Chemical Society, vol.137, issue.39, pp.12580-12587, 2015.
DOI : 10.1021/jacs.5b06934

URL : https://hal.archives-ouvertes.fr/hal-01211469

A. A. Hamdan, P. Liebgott, V. Fourmond, O. Gutiérrez-sanz, A. L. De-lacey et al., Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants, Proceedings of the National Academy of Sciences, 2012.
DOI : 10.1016/j.bioelechem.2009.02.010

A. K. Jones, S. E. Lamle, H. R. Pershad, K. A. Vincent, S. P. Albracht et al., [NiFe]-hydrogenase, Journal of the American Chemical Society, vol.125, issue.28, pp.8505-8514, 2003.
DOI : 10.1021/ja035296y

B. Limoges and J. Savéant, Catalysis by immobilized redox enzymes. Diagnosis of inactivation and reactivation effects through odd cyclic voltammetric responses, Journal of Electroanalytical Chemistry, vol.562, issue.1, pp.43-52, 2004.
DOI : 10.1016/j.jelechem.2003.07.035

V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. Wang et al., The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster, Nature Chemistry, vol.130, issue.4, pp.336-342, 2014.
DOI : 10.1021/ja711187e

URL : https://hal.archives-ouvertes.fr/hal-01481520

P. Ceccaldi, K. Schuchmann, V. Muller, and S. Elliott, reductase: the first completely CO tolerant FeFe-hydrogenase, Energy & Environmental Science, vol.137, issue.2, 2016.
DOI : 10.1021/jacs.5b01194

V. Hajj, C. Baffert, K. Sybirna, I. Meynial-salles, P. Soucaille et al., FeFe hydrogenase reductive inactivation and implication for catalysis, Energy Environ. Sci., vol.6, issue.2, pp.715-719, 2014.
DOI : 10.1039/c3ee00043e

URL : https://hal.archives-ouvertes.fr/hal-01481475

P. Ceccaldi, J. Rendon, C. Léger, R. Toci, B. Guigliarelli et al., Reductive activation of E. coli respiratory nitrate reductase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1847, issue.10, pp.1847-1055, 2015.
DOI : 10.1016/j.bbabio.2015.06.007

URL : https://hal.archives-ouvertes.fr/hal-01429839

V. Fourmond, P. Infossi, M. Giudici-orticoni, P. Bertrand, and C. Léger, ???Two-Step??? Chronoamperometric Method for Studying the Anaerobic Inactivation of an Oxygen Tolerant NiFe Hydrogenase, Journal of the American Chemical Society, vol.132, issue.13, pp.132-4848, 2010.
DOI : 10.1021/ja910685j

P. Ceccaldi, M. C. Marques, V. Fourmond, I. C. Pereira, and C. Léger, Oxidative inactivation of NiFeSe hydrogenase, Chemical Communications, vol.562, issue.75, pp.51-14223, 2015.
DOI : 10.1016/j.jelechem.2003.07.035

URL : https://hal.archives-ouvertes.fr/hal-01211493

J. M. Savéant, Elements of molecular and biomolecular electrochemistry : an electrochemical approach to electron transfer chemistry, 2006.
DOI : 10.1002/0471758078

C. Costentin, S. Drouet, M. Robert, and J. Savéant, Turnover numbers, turnover frequencies , and overpotential in molecular catalysis of electrochemical reactions. cyclic voltammetry and Preparative-Scale electrolysis, J. Am. Chem. Soc, pp.134-11235, 2012.

C. Costentin and J. Savéant, Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts, ChemElectroChem, vol.132, issue.7, pp.1226-1236, 2014.
DOI : 10.1002/0471758078

V. Artéro and J. Savéant, -evolving catalysts, Energy Environ. Sci., vol.134, issue.271, pp.3808-3814, 2014.
DOI : 10.1021/ja210661k

R. M. Kellett and T. G. Spiro, Cobalt porphyrin electrode films as hydrogen catalysts, Inorganic Chemistry, vol.24, issue.15, pp.2378-2382, 1985.
DOI : 10.1021/ic00209a012

A. L. Goff, V. Artéro, B. Jousselme, P. D. Tran, N. Guillet et al., From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake, Science, vol.11, issue.31, pp.1384-1387, 2009.
DOI : 10.1039/b905841a

URL : https://hal.archives-ouvertes.fr/hal-01154219

E. W. Mcqueen and J. I. Goldsmith, Electrochemical Analysis of Single-Walled Carbon Nanotubes Functionalized with Pyrene-Pendant Transition Metal Complexes, Journal of the American Chemical Society, vol.131, issue.48, pp.131-17554, 2009.
DOI : 10.1021/ja907294q

L. Tong, M. Gothelid, and L. Sun, Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts, Chemical Communications, vol.326, issue.80, pp.48-10025, 2012.
DOI : 10.1126/science.1179773

A. K. Das, M. H. Engelhard, R. M. Bullock, and J. A. Roberts, Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons with the Homogeneous Analogue, Inorganic Chemistry, vol.53, issue.13, pp.53-6875, 2014.
DOI : 10.1021/ic500701a

H. Tian, Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction, ChemSusChem, vol.7, issue.22, pp.3746-3759, 2015.
DOI : 10.1002/cssc.201402561

P. Rodriguez-maciá, A. Dutta, W. Lubitz, W. J. Shaw, and O. Rüdiger, Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes, Angewandte Chemie International Edition, vol.39, issue.42, pp.54-12303, 2015.
DOI : 10.1039/b921245k

V. Fourmond and C. Léger, Protein Electrochemistry: Questions and Answers, Adv Biochem Eng Biotechnol, vol.48, 2016.
DOI : 10.1142/p783

URL : https://hal.archives-ouvertes.fr/hal-01413237