E. Armbrust, The life of diatoms in the world's oceans, Nature, vol.8, issue.7244, pp.185-192, 2009.
DOI : 10.1111/j.1529-8817.2008.00526.x

A. Moustafa, Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms, Science, vol.16, issue.23, pp.1724-1726, 2009.
DOI : 10.1016/j.cub.2006.09.063

P. Deschamps and D. Moreira, Reevaluating the Green Contribution to Diatom Genomes, Genome Biology and Evolution, vol.3, issue.7, pp.795-800, 2012.
DOI : 10.1093/gbe/evr100

E. V. Armbrust, The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism, Science, vol.306, issue.5693, pp.79-86, 2004.
DOI : 10.1126/science.1101156

C. Wilhelm, The Regulation of Carbon and Nutrient Assimilation in Diatoms is Significantly Different from Green Algae, Protist, vol.157, issue.2, pp.91-124, 2006.
DOI : 10.1016/j.protis.2006.02.003

URL : https://hal.archives-ouvertes.fr/hal-01094652

M. R. Badger, The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO<sub>2</sub>-concentrating mechanisms in algae, Canadian Journal of Botany, vol.76, issue.6, pp.1052-1071, 1998.
DOI : 10.1139/cjb-76-6-1052

J. N. Young, Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms, Journal of Experimental Botany, vol.6, issue.5, pp.3445-3456, 2016.
DOI : 10.1104/pp.97.4.1348

H. Harada, D. Nakatsuma, M. Ishida, and Y. Matsuda, Regulation of the Expression of Intracellular ??-Carbonic Anhydrase in Response to CO2 and Light in the Marine Diatom Phaeodactylum tricornutum, PLANT PHYSIOLOGY, vol.139, issue.2, pp.1041-1050, 2005.
DOI : 10.1104/pp.105.065185

K. J. Crawfurd, J. A. Raven, G. L. Wheeler, E. J. Baxter, and I. Joint, The Response of Thalassiosira pseudonana to Long-Term Exposure to Increased CO2 and Decreased pH, PLoS ONE, vol.6, issue.10, p.26695, 2011.
DOI : 10.1371/journal.pone.0026695.s002

B. M. Hopkinson, C. Meile, and C. Shen, Quantification of Extracellular Carbonic Anhydrase Activity in Two Marine Diatoms and Investigation of Its Role, PLANT PHYSIOLOGY, vol.162, issue.2, pp.1142-1152, 2013.
DOI : 10.1104/pp.113.217737

R. Clement, L. Dimnet, S. C. Maberly, and B. Gontero, 42333 | DOI: 10.1038/srep42333 12 The nature of the CO 2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana, New Phytol, vol.7, issue.209, pp.1417-1427, 2016.

K. Nakajima, A. Tanaka, and Y. Matsuda, SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater, Proceedings of the National Academy of Sciences, vol.36, issue.2, pp.1767-1772, 2013.
DOI : 10.1046/j.1529-8817.2000.99164.x

J. R. Reinfelder, A. J. Milligan, and F. M. Morel, The Role of the C4 Pathway in Carbon Accumulation and Fixation in a Marine Diatom, PLANT PHYSIOLOGY, vol.135, issue.4, pp.2106-2111, 2004.
DOI : 10.1104/pp.104.041319

K. Roberts, E. Granum, R. C. Leegood, and J. A. Raven, C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control, PLANT PHYSIOLOGY, vol.145, issue.1, pp.230-235, 2007.
DOI : 10.1104/pp.107.102616

R. Tanaka, S. Kikutani, A. Mahardika, and Y. Matsuda, Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana, Photosynthesis Research, vol.367, issue.40, pp.251-263, 2014.
DOI : 10.1098/rstb.2011.0145

P. J. Mcginn and F. M. Morel, Expression and Inhibition of the Carboxylating and Decarboxylating Enzymes in the Photosynthetic C4 Pathway of Marine Diatoms, PLANT PHYSIOLOGY, vol.146, issue.1, pp.300-309, 2008.
DOI : 10.1104/pp.107.110569

T. Feng, Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum, Scientific Reports, vol.5, issue.1, p.10373, 2015.
DOI : 10.1002/pmic.200401131

Z. T. Muhseen, Q. Xiong, Z. Chen, and F. Ge, Proteomics studies on stress responses in diatoms, PROTEOMICS, vol.8, issue.125, pp.3943-3953, 2015.
DOI : 10.1371/journal.pone.0074483

C. Bowler, The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.9, issue.7219, pp.239-244, 2008.
DOI : 10.1038/nature07410

URL : https://hal.archives-ouvertes.fr/cea-00910244

N. L. Hockin, T. Mock, F. Mulholland, S. Kopriva, and G. Malin, The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants, PLANT PHYSIOLOGY, vol.158, issue.1, pp.299-312, 2012.
DOI : 10.1104/pp.111.184333

B. L. Nunn, Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation, PLoS ONE, vol.470, issue.10, p.75653, 2013.
DOI : 10.1371/journal.pone.0075653.s011

S. T. Dyhrman, The Transcriptome and Proteome of the Diatom Thalassiosira pseudonana Reveal a Diverse Phosphorus Stress Response, PLoS ONE, vol.5, issue.3, p.33768, 2012.
DOI : 10.1371/journal.pone.0033768.s007

S. Rosenwasser, Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment, Proceedings of the National Academy of Sciences, vol.42, issue.2, pp.2740-2745, 2014.
DOI : 10.1002/jms.1134

T. Mock, Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses, Proceedings of the National Academy of Sciences, vol.6, issue.1, pp.1579-1584, 2008.
DOI : 10.1021/pr0603194

F. Mus, Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum, Applied Microbiology and Biotechnology, vol.157, issue.2, pp.3625-3642, 2013.
DOI : 10.1016/j.protis.2006.02.003

P. F. Huesgen, Proteomic Amino-Termini Profiling Reveals Targeting Information for Protein Import into Complex Plastids, PLoS ONE, vol.57, issue.9, p.74483, 2013.
DOI : 10.1371/journal.pone.0074483.s008

URL : https://doi.org/10.1371/journal.pone.0074483

O. Kilian and P. G. Kroth, Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids, The Plant Journal, vol.36, issue.2, pp.175-183, 2005.
DOI : 10.1111/j.1365-313X.2004.02294.x

J. A. Raven, J. Beardall, and M. Giordano, Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms, Photosynthesis Research, vol.109, issue.1588, pp.111-124, 2014.
DOI : 10.1073/pnas.1120949109

M. Giordano, J. Beardall, and J. A. Raven, CONCENTRATING MECHANISMS IN ALGAE: Mechanisms, Environmental Modulation, and Evolution, Annual Review of Plant Biology, vol.56, issue.1, pp.99-131, 2005.
DOI : 10.1146/annurev.arplant.56.032604.144052

B. M. Hopkinson, C. L. Dupont, and Y. Matsuda, The physiology and genetics of CO 2 concentrating mechanisms in model diatoms, Current Opinion in Plant Biology, vol.31, pp.51-57, 2016.
DOI : 10.1016/j.pbi.2016.03.013

M. Baba, I. Suzuki, and Y. Shiraiwa, Proteomic Analysis of High-CO2-Inducible Extracellular Proteins in the Unicellular Green Alga, Chlamydomonas reinhardtii, Plant and Cell Physiology, vol.4, issue.8, pp.1302-1314, 2011.
DOI : 10.4161/psb.4.7.8540

N. Battchikova, Limitation Revealed by Quantitative Proteomics, Journal of Proteome Research, vol.9, issue.11, pp.5896-5912, 2010.
DOI : 10.1021/pr100651w

Y. Wang, D. Duanmu, and M. Spalding, Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture, Photosynthesis Research, vol.58, issue.1-3, pp.115-122, 2011.
DOI : 10.1111/j.1365-313X.2008.03758.x

G. Sandrini, S. Cunsolo, M. Schuurmans, H. Matthijs, and J. Huisman, Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO 2, Frontiers in Microbiology, vol.6, 2015.

B. D. Rae, B. M. Long, M. R. Badger, and G. D. Price, Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria, Microbiology and Molecular Biology Reviews, vol.77, issue.3, pp.357-379, 2013.
DOI : 10.1128/MMBR.00061-12

M. Mekhalfi, S. Amara, S. Robert, F. Carrière, and B. Gontero, Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae), Biochimie, vol.101, pp.21-30, 2014.
DOI : 10.1016/j.biochi.2013.12.004

URL : https://hal.archives-ouvertes.fr/hal-01494506

R. Groben, Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms, Photosynthesis Research, vol.18, issue.3, pp.183-194, 2010.
DOI : 10.1093/oxfordjournals.molbev.a003851

URL : https://hal.archives-ouvertes.fr/hal-00677532

E. Graciet, S. Lebreton, J. Camadro, and B. Gontero, Characterization of native and recombinant A4 glyceraldehyde 3-phosphate dehydrogenase, European Journal of Biochemistry, vol.277, issue.1, pp.129-136, 2003.
DOI : 10.1074/jbc.M111121200

L. Marri, Spontaneous Assembly of Photosynthetic Supramolecular Complexes as Mediated by the Intrinsically Unstructured Protein CP12, Journal of Biological Chemistry, vol.270, issue.4, pp.1831-1838, 2008.
DOI : 10.1110/ps.2760102

URL : https://hal.archives-ouvertes.fr/hal-00642077

T. P. Howard, G. J. Upton, J. C. Lloyd, and C. A. Raines, Antisense suppression of the small chloroplast protein CP12 in tobacco: A transcriptional viewpoint, Plant Signaling & Behavior, vol.16, issue.12, pp.2026-2030, 2011.
DOI : 10.1016/j.tplants.2010.12.003

B. Gontero and S. C. Maberly, An intrinsically disordered protein, CP12: jack of all trades and master of the Calvin cycle, Biochemical Society Transactions, vol.725, issue.5, pp.995-999, 2012.
DOI : 10.1042/BJ20082004

S. M. Khanna, P. C. Taxak, P. K. Jain, R. Saini, and R. Srinivasan, Glycolytic Enzyme Activities and Gene Expression in Cicer arietinum Exposed to Water-Deficit Stress, Applied Biochemistry and Biotechnology, vol.38, issue.8, pp.2241-2253, 2014.
DOI : 10.1111/j.1365-313X.2004.02090.x

M. Lommer, Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation, Genome Biology, vol.13, issue.7, pp.1-21, 1186.
DOI : 10.1074/mcp.M900421-MCP200

A. E. Allen, Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation, Proceedings of the National Academy of Sciences, vol.33, issue.6, pp.10438-10443, 2008.
DOI : 10.1016/j.febslet.2005.01.029

Y. Dellero, M. Lamothe-sibold, M. Jossier, and M. Hodges, photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth, The Plant Journal, vol.60, issue.6, pp.1005-1018, 2015.
DOI : 10.1093/jxb/erp056

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.12945/pdf

K. Kosová, I. T. Prá?il, and P. Vítámvás, Protein Contribution to Plant Salinity Response and Tolerance Acquisition, International Journal of Molecular Sciences, vol.129, issue.4, pp.6757-6789, 2013.
DOI : 10.1111/j.1439-0523.2010.01783.x

H. Xu, X. Zhao, C. Guo, L. Chen, and K. Li, Spinach 14-3-3 protein interacts with the plasma membrane H+-ATPase and nitrate reductase in response to excess nitrate stress, Plant Physiology and Biochemistry, vol.106, pp.187-197, 2016.
DOI : 10.1016/j.plaphy.2016.04.043

O. S. Rosenberg, Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II, FEBS Journal, vol.1746, issue.4, pp.682-694, 2006.
DOI : 10.1107/S0907444998003254

A. M. Hetherington and C. Brownlee, SIGNALS IN PLANTS, Annual Review of Plant Biology, vol.55, issue.1, pp.401-427, 2004.
DOI : 10.1146/annurev.arplant.55.031903.141624

A. Rocha and U. Vothknecht, The role of calcium in chloroplasts???an intriguing and unresolved puzzle, Protoplasma, vol.280, issue.16, pp.957-966, 2012.
DOI : 10.1074/jbc.M501550200

J. Sai and C. H. Johnson, Dark-Stimulated Calcium Ion Fluxes in the Chloroplast Stroma and Cytosol, THE PLANT CELL ONLINE, vol.14, issue.6, pp.1279-1291, 2002.
DOI : 10.1105/tpc.000653

L. Hamel, J. Sheen, and A. Séguin, Ancient signals: comparative genomics of green plant CDPKs, Trends in Plant Science, vol.19, issue.2, pp.79-89, 2014.
DOI : 10.1016/j.tplants.2013.10.009

N. Rosic, Unfolding the secrets of coral???algal symbiosis, The ISME Journal, vol.64, issue.4, pp.844-856, 2015.
DOI : 10.1016/j.gene.2013.12.041

E. Graciet, G. Mulliert, S. Lebreton, and B. Gontero, Involvement of two positively charged residues of Chlamydomonas reinhardtii glyceraldehyde-3-phosphate dehydrogenase in the assembly process of a bi-enzyme complex involved in CO2 assimilation, European Journal of Biochemistry, vol.29, issue.23-24, pp.4737-4744, 2004.
DOI : 10.1074/jbc.M106401200

B. Gontero, M. L. Cardenas, and J. Ricard, A functional five-enzyme complex of chloroplasts involved in the Calvin cycle, European Journal of Biochemistry, vol.260, issue.2, pp.437-443, 1988.
DOI : 10.1016/0003-9861(78)90119-4

J. Erales, L. Avilan, S. Lebreton, and B. Gontero, Exploring CP12 binding proteins revealed aldolase as a new partner for the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex???-???purification and kinetic characterization of this enzyme from Chlamydomonas reinhardtii, FEBS Journal, vol.136, issue.6, pp.1248-1259, 2008.
DOI : 10.1007/BF00404793

URL : https://hal.archives-ouvertes.fr/hal-00268030