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Objectives

Our objectives were to understand which environmental factors ~ were the main drivers of the expression of
microbial functions  in these intertidal sediments. With this aim, we distinguished several classes of environmental factors
potentially involved in regulation of microbial functions:

> Mangrove evolutionary stages  defined by 3 facies, i.e. pioneer (P, <ly), coppice (C, <5y) and young forest (F,
<10y);

Hydro-climatic conditions , i.e. two contrasted seasons: wet (WS) and dry (DS);
Hydro- and pedochemical properties  of soils, including qualitative characterization of soil OM (SOM) by SS #3C

Introduction

The Amazon River is responsible of a huge discharge of
sediments in Atlantic Ocean. A portion of 10 to 20 % of this
suspended particulate matter is diverted and follows a north-
western path under the influence of Guiana Current  that results
in a spectacular migration of 1 600 km  of subtidal mud belt
along the coastline of Guianas to the Orinoco Delta. In the
intertidal zone, mud banks form extensive mud flats whose
periodic dewatering by tide cycles progressively generates the CP-MAS NMR spectroscopy;
stabilization of the upper intertidal part. Its colonization by » Rhizospheric effects

biofilms and then by propagules imported from fringing mature piume of suspended particulate matter from Amazon's estuary (left) and its north-western : . . PR : E
Yy propag P ging ettt s Functions of microbial communities investigated were:

>
>

mangroves, promotes extending of mangrove ecosystem . « Microbial respiration (MR, Oxitop®);
In such environment, highly constrained by a rapid  and intensive hydro-sedimentary dynamic , the successional « Potential catabolic richness  and diversity by community level physiological profiling (CLPP, Biolog EcoPlates™);

dynamic of mangrove ecosystem gradually leads to the development of vegetation stage series , from pioneers to matures « Activity of 6 enzymes _involved in CNPS biogeochemical cycles.

and sometimes to senescents. The interactions between sediment, organic matter (OM), aboveground vegetation and meio-

Types of soils investigated were:
« Within P facies (3): a non-rhizospheric soil (NRZ), rhizospheric soils of Avicennia (RZA) and Laguncularia (RZL);
« C facies (1): an undifferentiated rhizospheric soil (RZ);
« F facies (1): RZ soil.

Study site

The study site is a fringing mangrove containing a mixed-species assemblage of Avicennia germinans and
Laguncularia racemosa located in urban context in French Guiana (Montabo's bay, Cayenne). This mangrove results from
a massive arrival of silt, which has begun to deposite since 2003, where 3 main facies occur corresponding to vegetation
evolutionary stages

and macro-fauna are responsible of ges in ground characteristic: and pol ter composition . These are related
to microbial community functioning which is a central component of biogeochemical processes and nutrient
dynamics that take place in mangrove ecosystem.

N Hydro-pedochemical properties of soils
Early colonization stage by micro-phytobenthos and mangrove of the Rapid and intensive erosion phase of mangrove (Montabo's bay, april 2011)
upperintertidal part of mud flat (Moniabo's bay, january 2006)
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