J. A. Eisen and P. C. Hanawalt, A phylogenomic study of DNA repair genes, proteins, and processes, Mutation Research/DNA Repair, vol.435, issue.3, pp.171-213, 1999.
DOI : 10.1016/S0921-8777(99)00050-6

J. Hoeijmakers, Genome maintenance mechanisms for preventing cancer, Nature, vol.411, issue.6835, pp.366-74, 2001.
DOI : 10.1038/35077232

L. Aravind, D. R. Walker, and E. Koonin, Conserved domains in DNA repair proteins and evolution of repair systems, Nucleic Acids Research, vol.27, issue.5, pp.1223-1265, 1999.
DOI : 10.1093/nar/27.5.1223

D. W. Grogan, The question of DNA repair in hyperthermophilic archaea, Trends in Microbiology, vol.8, issue.4, pp.180-185, 2000.
DOI : 10.1016/S0966-842X(00)01729-7

J. Jiricny, Postreplicative Mismatch Repair, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, pp.12633-12634, 2013.
DOI : 10.1101/cshperspect.a012633

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683899

H. E. Krokan and M. Bjoras, Base Excision Repair, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, pp.12583-12584, 2013.
DOI : 10.1101/cshperspect.a012583

C. Kisker, J. Kuper, and B. Van-houten, Prokaryotic Nucleotide Excision Repair, Cold Spring Harbor Perspectives in Biology, vol.5, issue.3, pp.12591-12592, 2013.
DOI : 10.1101/cshperspect.a012591

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578354

R. I. Amann, W. Ludwig, and K. H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol Rev, vol.59, issue.1, pp.143-69, 1995.

M. Ferrer, A. Beloqui, K. N. Timmis, and P. N. Golyshin, Metagenomics for Mining New Genetic Resources of Microbial Communities, Journal of Molecular Microbiology and Biotechnology, vol.16, issue.1-2, pp.1-2, 2009.
DOI : 10.1159/000142898

J. Handelsman, Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products, Chemistry & Biology, vol.5, issue.10, pp.245-254, 1998.
DOI : 10.1016/S1074-5521(98)90108-9

M. R. Rondon, Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms, Applied and Environmental Microbiology, vol.66, issue.6, pp.2541-2548, 2000.
DOI : 10.1128/AEM.66.6.2541-2547.2000

K. Lammle, Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning, Journal of Biotechnology, vol.127, issue.4, pp.575-92, 2007.
DOI : 10.1016/j.jbiotec.2006.07.036

C. Simon, J. Herath, S. Rockstroh, and R. Daniel, Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice, Applied and Environmental Microbiology, vol.75, issue.9, pp.2964-2972, 2009.
DOI : 10.1128/AEM.02644-08

J. H. Jeon, Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment, Applied Microbiology and Biotechnology, vol.15, issue.2, pp.623-654, 2011.
DOI : 10.1007/s00253-011-3433-x

G. Li, K. Wang, and Y. H. Liu, Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome, Microbial Cell Factories, vol.7, issue.1, pp.1-10, 2008.
DOI : 10.1186/1475-2859-7-38

C. Jiang, Biochemical characterization of two novel ??-glucosidase genes by metagenome expression cloning, Bioresource Technology, vol.102, issue.3, pp.3272-3280, 2011.
DOI : 10.1016/j.biortech.2010.09.114

T. Mori, H. Suenaga, and K. Miyazaki, A Metagenomic Approach to the Identification of UDP-Glucose 4-Epimerase as a Menadione Resistance Protein, Bioscience, Biotechnology, and Biochemistry, vol.37, issue.2, pp.1611-1615, 2008.
DOI : 10.1021/bi9601114

H. Yang, K. H. To, S. J. Aguila, and J. H. Miller, Metagenomic DNA fragments that affect Escherichia coli mutational pathways, Molecular Microbiology, vol.176, issue.4, pp.960-77, 2006.
DOI : 10.1111/j.1365-2958.2004.04125.x

H. Ogata, Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment, The ISME Journal, vol.38, issue.7, pp.1143-51, 2011.
DOI : 10.1186/1743-422X-6-223

M. Dlakic, Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases, Trends in Biochemical Sciences, vol.25, issue.6, pp.272-275, 2000.
DOI : 10.1016/S0968-0004(00)01582-6

H. Tamura, sphingomyelinase, Biochemical Journal, vol.309, issue.3, pp.757-64, 1995.
DOI : 10.1042/bj3090757

J. C. Whisstock, The Inositol Polyphosphate 5-Phosphatases and the Apurinic/Apyrimidinic Base Excision Repair Endonucleases Share a Common Mechanism for Catalysis, Journal of Biological Chemistry, vol.275, issue.47, pp.37055-61, 2000.
DOI : 10.1074/jbc.M006244200

J. Chen, Y. C. Chiang, and C. L. Denis, CCR4, a 3???-5??? poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase, The EMBO Journal, vol.29, issue.6, pp.1414-1440, 2002.
DOI : 10.1093/emboj/21.6.1414

K. Rogers, G. Gao, and L. Simpson, Uridylate-specific 3' 5'-Exoribonucleases Involved in Uridylate-deletion RNA Editing in Trypanosomatid Mitochondria, Journal of Biological Chemistry, vol.282, issue.40, pp.29073-80, 2007.
DOI : 10.1074/jbc.M704551200

H. Wang, Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity, The EMBO Journal, vol.56, issue.15, pp.2566-76, 2010.
DOI : 10.1038/35067025

A. Feddersen, Saccharomyces cerevisiae Ngl3p is an active 3'-5' exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases, Nucleic Acids Research, vol.40, issue.2, pp.837-883, 2012.
DOI : 10.1093/nar/gkr782

5. Reports, DOI: 10 Selective blockage of the 3? ?> 5? exonuclease activity of WRN protein by certain oxidative modifications and bulky lesions in DNA, AP Nucleic Acids Res, vol.6, issue.2814, pp.2762-70, 1038.

S. Cal, K. L. Tan, A. Mcgregor, and B. A. Connolly, Conversion of bovine pancreatic DNase I to a repair endonuclease with a high selectivity for abasic sites, The EMBO Journal, vol.3, issue.23, pp.7128-7166, 1998.
DOI : 10.1093/emboj/17.23.7128

M. A. Gorman, The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites, The EMBO Journal, vol.16, issue.21, pp.6548-58, 1997.
DOI : 10.1093/emboj/16.21.6548

K. Kaneda, J. Sekiguchi, and T. Shida, Role of the tryptophan residue in the vicinity of the catalytic center of exonuclease III family AP endonucleases: AP site recognition mechanism, Nucleic Acids Research, vol.34, issue.5, pp.1552-63, 2006.
DOI : 10.1093/nar/gkl059

E. P. Carpenter, AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis, The EMBO Journal, vol.93, issue.5, pp.1363-72, 2007.
DOI : 10.1038/sj.emboj.7601593

J. Silhan, Specialization of an Exonuclease III family enzyme in the repair of 3' DNA lesions during base excision repair in the human pathogen Neisseria meningitidis, Nucleic Acids Research, vol.40, issue.5, pp.2065-75, 2012.
DOI : 10.1093/nar/gkr905

T. Takemoto, 3'-Blocking Damage of DNA as a Mutagenic Lesion Caused by Hydrogen Peroxide in Escherichia coli., Journal of Radiation Research, vol.39, issue.2, pp.137-181, 1998.
DOI : 10.1269/jrr.39.137

E. Grzesiuk, The role of mutation frequency decline and SOS repair systems in methyl methanesulfonate mutagenesis, Acta Biochim Pol, vol.45, issue.2, pp.523-556, 1998.

M. Otterlei, Repair of chromosomal abasic sites in vivo involves at least three different repair pathways, The EMBO Journal, vol.19, issue.20, pp.5542-51, 2000.
DOI : 10.1093/emboj/19.20.5542

L. F. Agnez, R. L. Costa-de-oliveira, D. Mascio, P. Menck, and C. F. , exonuclease III and endonuclease IV in the repair of singlet oxygen-induced DNA damage, Carcinogenesis, vol.17, issue.5, pp.1183-1188, 1996.
DOI : 10.1093/carcin/17.5.1183

J. D. Levin, A. W. Johnson, and B. Demple, Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA, J Biol Chem, vol.263, issue.17, pp.8066-71, 1988.

B. Demple, A. Johnson, and D. Fung, Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli., Proceedings of the National Academy of Sciences, vol.83, issue.20, pp.7731-7736, 1986.
DOI : 10.1073/pnas.83.20.7731

S. N. Guzder, Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species, Genes & Development, vol.18, issue.18, pp.2283-91, 2004.
DOI : 10.1101/gad.1232804

A. Mazouzi, Insight into mechanisms of 3'-5' exonuclease activity and removal of bulky 8,5'-cyclopurine adducts by apurinic/apyrimidinic endonucleases, Proceedings of the National Academy of Sciences, vol.110, issue.33, pp.3071-3080, 2013.
DOI : 10.1073/pnas.1305281110

A. A. Ishchenko, X. Yang, D. Ramotar, and M. Saparbaev, The 3'->5' Exonuclease of Apn1 Provides an Alternative Pathway To Repair 7,8-Dihydro-8-Oxodeoxyguanosine in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.25, issue.15, pp.6380-90, 2005.
DOI : 10.1128/MCB.25.15.6380-6390.2005

G. Golan, Coupling of the nucleotide incision and 3??????5??? exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.685, issue.1-2, pp.70-79, 2010.
DOI : 10.1016/j.mrfmmm.2009.08.017

P. Burkovics, V. Szukacsov, I. Unk, and L. Haracska, Human Ape2 protein has a 3'-5' exonuclease activity that acts preferentially on mismatched base pairs, Nucleic Acids Research, vol.34, issue.9, pp.2508-2523, 2006.
DOI : 10.1093/nar/gkl259

URL : http://doi.org/10.1093/nar/gkl259

T. Nishino and K. Morikawa, Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors, Oncogene, vol.21, issue.58, pp.9022-9054, 2002.
DOI : 10.1038/sj.onc.1206135

S. Butcher, P. Hainaut, and J. Milner, Increased salt concentration reversibly destabilizes p53 quaternary structure and sequencespecific DNA binding, Biochem J 298 Pt, vol.3, pp.513-519, 1994.
DOI : 10.1042/bj2980513

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137888

D. A. Lehtinen, The TREX1 Double-stranded DNA Degradation Activity Is Defective in Dominant Mutations Associated with Autoimmune Disease, Journal of Biological Chemistry, vol.283, issue.46, pp.31649-56, 2008.
DOI : 10.1074/jbc.M806155200

J. P. Erzberger and D. M. Wilson, The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis, Journal of Molecular Biology, vol.290, issue.2, pp.447-57, 1999.
DOI : 10.1006/jmbi.1999.2888

S. M. Kerins, R. Collins, and T. Mccarthy, Characterization of an Endonuclease IV 3'-5' Exonuclease Activity, Journal of Biological Chemistry, vol.278, issue.5, pp.3048-54, 2003.
DOI : 10.1074/jbc.M210750200

R. G. Pacchioni, Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil, MicrobiologyOpen, vol.78, issue.3, pp.299-315, 2014.
DOI : 10.1002/mbo3.169

N. I. Dmitrieva, Q. Cai, and M. B. Burg, Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo, Proceedings of the National Academy of Sciences, vol.101, issue.8, pp.2317-2339, 2004.
DOI : 10.1073/pnas.0308463100

S. G. Grant, J. Jessee, F. R. Bloom, and D. Hanahan, Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants., Proceedings of the National Academy of Sciences, vol.87, issue.12, pp.4645-4654, 1990.
DOI : 10.1073/pnas.87.12.4645

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC54173

B. J. Bachmann, Pedigrees of Some Mutant Strains of Escherichia-Coli K-12, Bacteriological Reviews, vol.36, issue.4, pp.525-57, 1972.

P. Sheffield, S. Garrard, and Z. Derewenda, Overcoming Expression and Purification Problems of RhoGDI Using a Family of ???Parallel??? Expression Vectors, Protein Expression and Purification, vol.15, issue.1, pp.34-43, 1999.
DOI : 10.1006/prep.1998.1003

E. Amann, B. Ochs, and K. J. Abel, Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli, Gene, vol.69, issue.2, pp.301-316, 1988.
DOI : 10.1016/0378-1119(88)90440-4

E. Gasteiger, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, vol.31, issue.13, pp.3784-3792, 2003.
DOI : 10.1093/nar/gkg563

M. Bhasin, A. Garg, and G. P. Raghava, PSLpred: prediction of subcellular localization of bacterial proteins, Bioinformatics, vol.21, issue.10, pp.2522-2526, 2005.
DOI : 10.1093/bioinformatics/bti309

C. Notredame, D. G. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment, Journal of Molecular Biology, vol.302, issue.1, pp.205-222, 2000.
DOI : 10.1006/jmbi.2000.4042

K. Tamura, MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2740, 2011.
DOI : 10.1093/molbev/msr121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203626