J. Akers, D. Gonda, R. Kim, B. Carter, and C. Chen, Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies, Journal of Neuro-Oncology, vol.34, issue.3, pp.1-11, 2013.
DOI : 10.1016/j.bcmd.2005.03.002

URL : http://europepmc.org/articles/pmc5533094?pdf=render

A. Piccin, W. Murphy, and O. Smith, Circulating microparticles: pathophysiology and clinical implications, Blood Reviews, vol.21, issue.3, pp.157-171, 2007.
DOI : 10.1016/j.blre.2006.09.001

J. Zwicker, Tissue Factor???Bearing Microparticles and Cancer, Seminars in Thrombosis and Hemostasis, vol.34, issue.02, pp.195-198, 2008.
DOI : 10.1055/s-2008-1079260

C. Théry, M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses, Nature Reviews Immunology, vol.166, issue.8, pp.581-593, 2009.
DOI : 10.4049/jimmunol.166.12.7309

D. Toro, J. Herschlik, L. Waldner, C. Mongini, and C. , Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications, Front Immunol, vol.6, p.203, 2015.

T. Ihara, T. Yamamoto, M. Sugamata, H. Okumura, and Y. Ueno, The process of ultrastructural changes from nuclei to apoptotic body, Virchows Archiv, vol.433, issue.5, pp.443-447, 1998.
DOI : 10.1007/s004280050272

R. Taylor, S. Cullen, and S. Martin, Apoptosis: controlled demolition at the cellular level, Nature Reviews Molecular Cell Biology, vol.397, issue.3, pp.231-241, 2008.
DOI : 10.1016/S0167-4838(98)00133-2

J. Chou, N. Mackman, G. Merrill-skoloff, B. Pedersen, B. Furie et al., Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation, Blood, vol.104, issue.10, pp.3190-3197, 2004.
DOI : 10.1182/blood-2004-03-0935

URL : http://www.bloodjournal.org/content/bloodjournal/104/10/3190.full.pdf

G. Camussi, M. Deregibus, S. Bruno, V. Cantaluppi, and L. Biancone, Exosomes/microvesicles as a mechanism of cell-to-cell communication, Kidney International, vol.78, issue.9, pp.838-848, 2010.
DOI : 10.1038/ki.2010.278

URL : https://doi.org/10.1038/ki.2010.278

A. Owens, . Iii, and N. Mackman, Microparticles in Hemostasis and Thrombosis, Circulation Research, vol.108, issue.10, pp.1284-1297, 2011.
DOI : 10.1161/CIRCRESAHA.110.233056

URL : http://circres.ahajournals.org/content/circresaha/108/10/1284.full.pdf

I. Agouti, S. Cointe, and S. Robert, Platelet and not erythrocyte microparticles are procoagulant in transfused thalassaemia major patients, British Journal of Haematology, vol.89, issue.4, pp.615-624, 2015.
DOI : 10.1038/ki.1996.186

URL : http://onlinelibrary.wiley.com/doi/10.1111/bjh.13609/pdf

M. Zarfati, T. Katz, I. Avivi, B. Brenner, A. A. Darbousset et al., PO-45 -The role of microvesicles in multiple myeloma progression Inhibition of platelet activation prevents the P-selectin and integrin-dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis in vivo, Thromb Res Int J Cancer, vol.140136, issue.2, pp.462-475, 2015.

B. Lwaleed, L. Lam, M. Lasebai, and A. Cooper, Expression of tissue factor and tissue factor pathway inhibitor in microparticles and subcellular fractions of normal and malignant prostate cell lines, Blood Coagulation & Fibrinolysis, vol.24, issue.3, pp.339-343, 2013.
DOI : 10.1097/MBC.0b013e32835e98a6

R. Kushak, E. Nestoridi, J. Lambert, M. Selig, J. Ingelfinger et al., Detached endothelial cells and microparticles as sources of tissue factor activity, Thrombosis Research, vol.116, issue.5, pp.409-419, 2005.
DOI : 10.1016/j.thromres.2005.01.013

S. Maroney, S. Haberichter, and P. Friese, Active tissue factor pathway inhibitor is expressed on the surface of coated platelets, Blood, vol.109, issue.5, pp.1931-1937, 2007.
DOI : 10.1182/blood-2006-07-037283

URL : http://www.bloodjournal.org/content/bloodjournal/109/5/1931.full.pdf

J. Keuren, E. Magdeleyns, J. Govers-riemslag, T. Lindhout, and J. Curvers, Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation, British Journal of Haematology, vol.86, issue.1, pp.307-313, 2006.
DOI : 10.1161/01.ATV.0000128125.80559.9c

A. Brisset, A. Terrisse, and D. Dupouy, Shedding of active Tissue Factor by aortic smooth muscle cells (SMCs) undergoing apoptosis, Thrombosis and Haemostasis, vol.90, issue.3, pp.511-518, 2003.
DOI : 10.1160/TH02-12-0291

A. Aharon, T. Tamari, and B. Brenner, Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells, Thromb Haemost, vol.100, issue.5, pp.878-885, 2008.

A. Angelillo-scherrer, Leukocyte-Derived Microparticles in Vascular Homeostasis, Circulation Research, vol.110, issue.2, pp.356-369, 2012.
DOI : 10.1161/CIRCRESAHA.110.233403

URL : http://circres.ahajournals.org/content/circresaha/110/2/356.full.pdf

R. Koshiar, S. Somajo, E. Norström, and B. Dahlbäck, Erythrocyte-Derived Microparticles Supporting Activated Protein C-Mediated Regulation of Blood Coagulation, PLoS ONE, vol.91, issue.8, p.104200, 2014.
DOI : 10.1371/journal.pone.0104200.s007

R. Lacroix, F. Sabatier, and A. Mialhe, Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro, Blood, vol.110, issue.7, pp.2432-2439, 2007.
DOI : 10.1182/blood-2007-02-069997

URL : https://hal.archives-ouvertes.fr/inserm-00160595

A. Ginestra, S. Monea, and G. Seghezzi, Urokinase Plasminogen Activator and Gelatinases Are Associated with Membrane Vesicles Shed by Human HT1080 Fibrosarcoma Cells, Journal of Biological Chemistry, vol.53, issue.27, pp.17216-17222, 1997.
DOI : 10.1074/jbc.270.12.6691

URL : http://www.jbc.org/content/272/27/17216.full.pdf

A. Ginestra, L. Placa, M. Saladino, F. Cassarà, D. Nagase et al., The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness, Anticancer Res, vol.18, issue.5A, pp.3433-3437, 1998.

A. Ginestra, D. Miceli, V. Dolo, F. Romano, and M. Vittorelli, Membrane vesicles in ovarian cancer fluids: a new potential marker, Anticancer Res, vol.19, issue.4C, pp.3439-3445, 1999.

V. Dolo, A. Ginestra, and D. Cassarà, Selective localization of matrix metalloproteinase 9, beta1 integrins, and human lymphocyte antigen class I molecules on membrane vesicles shed by 8701- BC breast carcinoma cells, Cancer Res, vol.58, pp.4468-4474, 1998.

V. Dolo, D. Ascenzo, S. Violini, and S. , Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro, Clinical & Experimental Metastasis, vol.17, issue.2, pp.131-140, 1999.
DOI : 10.1023/A:1006500406240

A. Angelucci, D. Ascenzo, S. Festuccia, and C. , Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines, Clinical and Experimental Metastasis, vol.18, issue.2, pp.163-170, 2000.
DOI : 10.1023/A:1006778000173

L. Graves, E. Ariztia, J. Navari, H. Matzel, M. Stack et al., Proinvasive Properties of Ovarian Cancer Ascites-Derived Membrane Vesicles, Cancer Research, vol.64, issue.19, pp.7045-7049, 2004.
DOI : 10.1158/0008-5472.CAN-04-1800

URL : http://cancerres.aacrjournals.org/content/canres/64/19/7045.full.pdf

R. Lacroix, L. Plawinski, and S. Robert, Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis, Haematologica, vol.97, issue.12, pp.1864-1872, 2012.
DOI : 10.3324/haematol.2012.066167

URL : https://hal.archives-ouvertes.fr/inserm-00711679

R. Lacroix and F. Dignat-george, Microparticles: new protagonists in pericellular and intravascular proteolysis, Semin Thromb Hemost, vol.39, issue.1, pp.33-39, 2013.

T. Dejouvencel, L. Doeuvre, and R. Lacroix, Fibrinolytic cross-talk: a new mechanism for plasmin formation, Blood, vol.115, issue.10, pp.2048-2056, 2010.
DOI : 10.1182/blood-2009-06-228817

URL : https://hal.archives-ouvertes.fr/inserm-00439535

H. Lijnen, Elements of the Fibrinolytic System, Annals of the New York Academy of Sciences, vol.82, issue.1, pp.226-236, 2001.
DOI : 10.1042/bj1660021

S. Falati, Q. Liu, and P. Gross, Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin, The Journal of Experimental Medicine, vol.267, issue.1, pp.1585-1598, 2003.
DOI : 10.1016/0092-8674(93)80055-J

G. Thomas, L. Panicot-dubois, R. Lacroix, F. Dignat-george, D. Lombardo et al., Cancer cell???derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo, The Journal of Experimental Medicine, vol.327, issue.9, pp.1913-1927, 2009.
DOI : 10.1016/j.critrevonc.2007.01.001

URL : http://jem.rupress.org/content/jem/206/9/1913.full.pdf

A. Khorana and G. Connolly, Assessing Risk of Venous Thromboembolism in the Patient With Cancer, Journal of Clinical Oncology, vol.27, issue.29, pp.4839-4847, 2009.
DOI : 10.1200/JCO.2009.22.3271

A. Khorana, M. Dalal, J. Lin, and G. Connolly, Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States, Cancer, vol.48, issue.suppl, pp.648-655, 2013.
DOI : 10.1016/j.ejca.2011.10.017

S. Nomura, M. Niki, T. Nisizawa, T. Tamaki, and M. Shimizu, Microparticles as Biomarkers of Blood Coagulation in Cancer, Biomarkers in Cancer, vol.7, pp.51-56, 2015.
DOI : 10.4137/BIC.S30347

URL : https://doi.org/10.4137/bic.s30347

N. Es, S. Bleker, A. Sturk, and R. Nieuwland, Clinical significance of tissue factor-exposing microparticles in arterial and venous thrombosis the incidence of deep vein thrombosis in mice, Semin Thromb Hemost J Thromb Haemost, vol.4113, issue.77, pp.718-7271310, 2015.

J. Zwicker, Predictive value of tissue factor bearing microparticles in cancer associated thrombosis, Thrombosis Research, vol.125, issue.2, pp.89-91, 2010.
DOI : 10.1016/S0049-3848(10)70022-0

T. Jung, D. Castellana, and P. Klingbeil, CD44v6 Dependence of Premetastatic Niche Preparation by Exosomes, Neoplasia, vol.11, issue.10, pp.1093-1105, 2009.
DOI : 10.1593/neo.09822

URL : https://doi.org/10.1593/neo.09822

F. Lo-coco and E. Ammatuna, The Biology of Acute Promyelocytic Leukemia and Its Impact on Diagnosis and Treatment, Hematology, vol.2006, issue.1, pp.156-161, 2006.
DOI : 10.1182/asheducation-2006.1.156

A. Melnick and J. Licht, Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia, Blood, vol.93, issue.10, pp.3167-3215, 1999.

Z. Wang and Z. Chen, Acute promyelocytic leukemia: from highly fatal to highly curable, Blood, vol.111, issue.5, pp.2505-2515, 2008.
DOI : 10.1182/blood-2007-07-102798

URL : http://www.bloodjournal.org/content/bloodjournal/111/5/2505.full.pdf

J. De-la-serna, P. Montesinos, and E. Vellenga, Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin, Blood, vol.111, issue.7, pp.3395-3402, 2008.
DOI : 10.1182/blood-2007-07-100669

S. Lehmann, A. Ravn, and L. Carlsson, Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish Adult Acute Leukemia Registry, Leukemia, vol.88, issue.7, pp.1128-1134, 2011.
DOI : 10.1111/j.1600-0609.2006.00803.x

T. Myers, F. Rickles, C. Barb, and M. Cronlund, Fibrinopeptide A in acute leukemia: relationship of activation of blood coagulation to disease activity, Blood, vol.57, issue.3, pp.518-525, 1981.

K. Bauer and R. Rosenberg, Thrombin generation in acute promyelocytic leukemia, Blood, vol.64, issue.4, pp.791-796, 1984.

M. Tallman, P. Lefèbvre, and R. Baine, Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia, Journal of Thrombosis and Haemostasis, vol.95, issue.8, pp.1341-1350, 2004.
DOI : 10.7326/0003-4819-117-4-292

J. Wang, I. Weiss, K. Svoboda, and H. Kwaan, Thrombogenic role of cells undergoing apoptosis, British Journal of Haematology, vol.255, issue.2, pp.382-391, 2001.
DOI : 10.3109/10428199309054728

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2141.2001.03095.x/pdf

B. Bennett, N. Booth, A. Croll, and A. Dawson, The bleeding disorder in acute promyelocytic leukaemia: fibrinolysis due to u-PA rather than defibrination, British Journal of Haematology, vol.61, issue.4, pp.511-517, 1989.
DOI : 10.1021/bi00628a023

H. Tapiovaara, S. Matikainen, M. Hurme, and A. Vaheri, Induction of differentiation of promyelocytic NB4 cells by retinoic acid is associated with rapid increase in urokinase activity subsequently downregulated by production of inhibitors, Blood, vol.83, issue.7, pp.1883-1891, 1994.

H. Tapiovaara, R. Alitalo, R. Stephens, H. Myöhänen, T. Ruutu et al., Abundant urokinase activity on the surface of mononuclear cells from blood and bone marrow of acute leukemia patients, Blood, vol.82, issue.3, pp.914-919, 1993.

R. Stephens, R. Alitalo, H. Tapiovaara, and A. Vaheri, Production of an active urokinase by leukemia cells: A novel distinction from cell lines of solid tumors, Leukemia Research, vol.12, issue.5, pp.419-422, 1988.
DOI : 10.1016/0145-2126(88)90061-6

J. Menell, G. Cesarman, A. Jacovina, M. Mclaughlin, E. Lev et al., Annexin II and Bleeding in Acute Promyelocytic Leukemia, New England Journal of Medicine, vol.340, issue.13, pp.994-1004, 1999.
DOI : 10.1056/NEJM199904013401303

P. Connell, P. Madureira, J. Berman, R. Liwski, and D. Waisman, Regulation of S100A10 by the PML-RAR-?? oncoprotein, Blood, vol.117, issue.15, pp.4095-4105, 2011.
DOI : 10.1182/blood-2010-07-298851

J. Meijers, E. Oudijk, and L. Mosnier, Reduced activity of TAFI (thrombin-activatable fibrinolysis inhibitor) in acute promyelocytic leukaemia, British Journal of Haematology, vol.61, issue.3, pp.518-523, 2000.
DOI : 10.1056/NEJM199307153290307

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2141.2000.01890.x/pdf

H. Kwaan and E. Rego, Role of Microparticles in the Hemostatic Dysfunction in Acute Promyelocytic Leukemia, Seminars in Thrombosis and Hemostasis, vol.36, issue.08, pp.917-924, 2010.
DOI : 10.1055/s-0030-1267045

H. Kwaan, E. Rego, B. Mcmahon, I. Weiss, and J. Marvin, Microparticles in acute promyelocytic leukemia, Blood, vol.118, p.3346, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01463853

C. Judicone, D. Frankel, and R. Lacroix, Microparticles from Acute Promyelocytic Leukemia Generate Plasmin in Urokinase-Dependant Manner, 2016.