P. M. Bernier, R. Chua, and I. M. Franks, Is proprioception calibrated during visually guided movements?, Experimental Brain Research, vol.69, issue.2, pp.292-296, 2005.
DOI : 10.1007/s00221-005-0063-5

O. Bock, Adaptation of aimed arm movements to sensorimotor discordance: evidence for direction-independent gain control, Behavioural Brain Research, vol.51, issue.1, pp.41-50, 1992.
DOI : 10.1016/S0166-4328(05)80310-9

C. S. Choe and R. B. Welch, Variables affecting the intermanual transfer and decay of prism adaptation., Journal of Experimental Psychology, vol.102, issue.6, pp.1076-1084, 1974.
DOI : 10.1037/h0036325

M. M. Cohen, CONTINUOUS VERSUS TERMINAL VISUAL FEEDBACK IN PRISM AFTEREFFECTS, Perceptual and Motor Skills, vol.24, issue.3c, pp.1295-1302, 1967.
DOI : 10.1126/science.140.3568.812

M. M. Cohen, Changes in auditory localization following prismatic exposure under continuous and terminal visual feedback. Perceptual and Motor Skills Measuring generalization of visuomotor perturbations in wrist movements using mobile phones, PLoS ONE, vol.38, issue.6, p.20290, 1974.

J. Fernandez-ruiz, W. Wong, I. T. Armstrong, and . Flanagan, Relation between reaction time and reach errors during visuomotor adaptation, Behavioural Brain Research, vol.219, issue.1, pp.8-14, 2011.
DOI : 10.1016/j.bbr.2010.11.060

J. R. Flanagan and A. K. Rao, Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space, Journal of Neurophysiology, vol.74, issue.5, pp.2174-2178, 1995.

S. J. Goodbody and M. Wolpert, The effect of visuomotor displacements on arm movement paths, Experimental Brain Research, vol.127, issue.2, pp.213-223, 1999.
DOI : 10.1007/s002210050791

J. Gordon, M. F. Ghilardi, and C. Ghez, Accuracy of planar reaching movements, Experimental Brain Research, vol.3, issue.Suppl whole No., pp.97-111, 1994.
DOI : 10.1007/BF00241415

H. Heuer and M. Hegele, Constraints on visuo-motor adaptation depend on the type of visual feedback during practice, Experimental Brain Research, vol.103, issue.1, pp.101-110, 2008.
DOI : 10.1007/s00221-007-1135-5

M. Hinder, J. Treslian, S. Riek, and R. Carson, The contribution of visual feedback to visuomotor adaptation: How much and when?, Brain Research, vol.1197, pp.123-134, 2008.
DOI : 10.1016/j.brainres.2007.12.067

H. Imamizu and S. Shimojo, The locus of visual-motor learning at the task or manipulator level: Implications from intermanual transfer., Journal of Experimental Psychology: Human Perception and Performance, vol.21, issue.4, pp.719-733, 1995.
DOI : 10.1037/0096-1523.21.4.719

M. I. Jordan, Computational aspects of motor control and learning Handbook of perception and action, pp.71-120, 1996.

M. Kawato, Internal models for motor control and trajectory planning, Current Opinion in Neurobiology, vol.9, issue.6, pp.718-727, 1999.
DOI : 10.1016/S0959-4388(99)00028-8

J. Krakauer, Motor Learning and Consolidation: The Case of Visuomotor Rotation, Advances in Experimental Medicine and Biology, vol.629, pp.405-421, 2009.
DOI : 10.1007/978-0-387-77064-2_21

J. W. Krakauer, . Z. Pine, M. Ghilardi, and C. Ghez, Learning of visuomotor transformations for vectorial planning of reaching trajectories, Journal of Neuroscience, issue.23, pp.20-8916, 2000.

X. Liu and R. Scheidt, Contributions of Online Visual Feedback to the Learning and Generalization of Novel Finger Coordination Patterns, Journal of Neurophysiology, vol.99, issue.5, pp.2546-2557, 2008.
DOI : 10.1152/jn.01044.2007

J. Pellegrini and M. Flanders, Force path curvature and conserved features of muscle activation, Experimental Brain Research, vol.110, issue.1, pp.80-90, 1996.
DOI : 10.1007/BF00241377

Y. Rossetti, M. Desmurget, and C. Prablanc, Vector coding of movement: Vision, proprioception, or both, Journal of Neurophysiology, vol.74, issue.1, pp.457-463, 1995.

R. L. Sainburg and J. Wang, Interlimb transfer of visuomotor rotations: independence of direction and final position information, Experimental Brain Research, vol.145, issue.4, pp.437-447, 2002.
DOI : 10.1007/s00221-002-1140-7

J. A. Saunders and D. C. Knill, Humans use continuous visual feedback from the hand to control fast reaching movements, Experimental Brain Research, vol.152, issue.3, pp.341-352, 2003.
DOI : 10.1007/s00221-003-1525-2

B. A. Shabbott and R. L. Sainburg, Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping, Experimental Brain Research, vol.100, issue.1, pp.75-87, 2010.
DOI : 10.1007/s00221-010-2209-3

J. B. Smeets, J. J. Van-den-dobbelsteen, D. D. De-grave, R. J. Van-beers, and E. Brenner, Sensory integration does not lead to sensory calibration, Proceedings of the National Academy of Sciences of the USA, pp.18781-18786, 2006.
DOI : 10.1073/pnas.0607687103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693739

J. J. Uhlarik and L. K. Canon, Influence of concurrent and terminal exposure conditions on the nature of perceptual adaptation., Journal of Experimental Psychology, vol.91, issue.2, pp.233-239, 1971.
DOI : 10.1037/h0031786

M. Veyrat-masson, J. Brière, and L. Proteau, Automaticity of online control processes in manual aiming, Journal of Vision, vol.10, issue.14, p.27, 2010.
DOI : 10.1167/10.14.27

P. Vindras and P. Viviani, Altering the visuomotor gain, Experimental Brain Research, vol.147, issue.3, pp.280-295, 2002.
DOI : 10.1007/s00221-002-1211-9

R. Welch, B. Bridgeman, S. Anand, and K. Browman, Alternating prism exposure causes dual adaptation and generalization to a novel displacement, Perception & Psychophysics, vol.103, issue.2, pp.195-204, 1993.
DOI : 10.3758/BF03211756

D. G. Woolley, J. R. Tresilian, R. G. Carson, and S. Riek, Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace, Experimental Brain Research, vol.28, issue.2, pp.155-165, 2007.
DOI : 10.1007/s00221-006-0778-y