J. J. Atick, Could information theory provide an ecological theory of sensory processing? Network: Computation in Neural Systems, pp.213-52, 1992.

S. Fischer, R. Redondo, L. U. Perrinet, and G. Cristóbal, Sparse Approximation of Images Inspired from the Functional Architecture of the Primary Visual Areas, EURASIP Journal on Advances in Signal Processing, vol.2007, issue.1, pp.90727-122, 2007.
DOI : 10.1023/A:1026553619983

S. Fischer, F. Sroubek, L. U. Perrinet, R. Redondo, and G. Cristóbal, Self-Invertible 2D Log-Gabor Wavelets, International Journal of Computer Vision, vol.3, issue.4, pp.231-246, 2007.
DOI : 10.1007/s11263-006-0026-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Galerne, Y. Gousseau, and J. M. , Micro-Texture Synthesis by Phase Randomization, Image Processing On Line, vol.1, 2011.
DOI : 10.5201/ipol.2011.ggm_rpn

URL : http://doi.org/10.5201/ipol.2011.ggm_rpn

S. Wilson and . Geisler, Visual Perception and the Statistical Properties of Natural Scenes, Annual Review of Psychology, vol.59, issue.1, pp.167-192, 2008.

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95, 2007.
DOI : 10.1109/MCSE.2007.55

M. Lance and . Kaplan, Extended fractal analysis for texture classification and segmentation, IEEE Transactions on Image Processing, vol.8, issue.11, pp.1572-1585, 1999.

A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, Procedural noise using sparse gabor convolution, Proceedings of ACM SIGGRAPH 2009), pp.54-64, 2009.
DOI : 10.1145/1531326.1531360

URL : https://hal.archives-ouvertes.fr/inria-00606821

S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, vol.41, issue.12, pp.3397-3414, 1993.
DOI : 10.1109/78.258082

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering, vol.9, issue.3, pp.10-20, 2007.
DOI : 10.1109/MCSE.2007.58

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bruno, D. J. Olshausen, and . Field, Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, pp.3311-3325, 1997.

L. Perrinet, M. Samuelides, and S. Thorpe, Coding Static Natural Images Using Spiking Event Times: Do Neurons Cooperate?, 833303. Special issue on 'Temporal Coding for Neural Information Processing', pp.1164-1175, 2004.
DOI : 10.1109/TNN.2004.833303

URL : https://hal.archives-ouvertes.fr/hal-00110803

L. Perrinet, M. Samuelides, and S. Thorpe, Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit, Special issue: New Aspects in Neurocomputing: 10th European Symposium on Artificial Neural Networks 2002 -Edited by T. Villmann, pp.125-134, 2004.
DOI : 10.1016/j.neucom.2004.01.010

L. U. Perrinet, Role of Homeostasis in Learning Sparse Representations, Neural Computation, vol.19, issue.36, pp.1812-1848, 2010.
DOI : 10.1162/089976601300014385

URL : https://hal.archives-ouvertes.fr/hal-00156610

U. Laurent and . Perrinet, Sparse models for computer vision Biologically Inspired Computer Vision, chapter 13

U. Laurent, J. A. Perrinet, and . Bednar, Edge co-occurrences can account for rapid categorization of natural versus animal images, Scientific Reports, vol.5

X. Pitkow and M. Meister, Decorrelation and efficient coding by retinal ganglion cells, Nature Neuroscience, vol.23, issue.4, pp.628-635, 2012.
DOI : 10.1038/nature07140

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725273

C. Ravello, F. Olivares, R. Herzog, L. Perrinet, M. J. Escobar et al., Spatiotemporal tuning of retinal ganglion cells dependent on the context of signal presentation, European Retina Meeting 2015, 2015.

R. V-rikhye and M. Sur, Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex, Journal of Neuroscience, vol.35, issue.43, pp.14661-14680, 2015.
DOI : 10.1523/JNEUROSCI.1660-15.2015

P. Sallee and B. A. Olshausen, Learning Sparse Multiscale Image Representations Advances in neural information processing systems, pp.1327-1361, 2003.

P. Sanz-leon, I. Vanzetta, G. S. Masson, and L. U. Perrinet, Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception, Journal of Neurophysiology, vol.107, issue.11, pp.3217-3226, 2011.
DOI : 10.1152/jn.00737.2011

E. Simoncelli, . Paninski, O. Pillow, and . Schwartz, Characterization of neural responses with stochastic stimuli, Cognitive Neurosciences Iii, pp.327-338, 2004.

J. Touryan, Analysis of sensory coding with complex stimuli, Current Opinion in Neurobiology, vol.11, issue.4, pp.443-448, 2001.
DOI : 10.1016/S0959-4388(00)00232-4

J. Vacher, A. I. Meso, U. Laurent, G. Perrinet, and . Peyré, Biologically inspired dynamic textures for probing motion perception
URL : https://hal.archives-ouvertes.fr/hal-01225867

I. C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, URL http://papers.nips.cc/paper/5769-biologically-inspired- dynamic-textures-for-probing-motion-perception, Advances in Neural Information Processing Systems 28, pp.1918-1926, 2015.

G. S. Xia, S. Ferradans, G. Peyré, and J. F. , Synthesizing and Mixing Stationary Gaussian Texture Models, SIAM Journal on Imaging Sciences, vol.7, issue.1, pp.476-508
DOI : 10.1137/130918010

URL : https://hal.archives-ouvertes.fr/hal-00816342